ArgTools: a backtracking-based solver for abstract argumentation

Samer Nofal1, Katie Atkinson2 and Paul E. Dunne2

1 Computer Science Department, German Jordanian University, Jordan
2 Computer Science Department, University of Liverpool, United Kingdom

Abstract. We present ArgTools, a system for reasoning with abstract argumentation frameworks. The system solves a number of argumentation problems under preferred, stable, complete and grounded semantics. ArgTools is a C++ implementation of a backtracking algorithm.

Keywords: algorithms, argumentation semantics, automated reasoning.

1 Introduction

Abstract argumentation frameworks (AFs), introduced in [4], are an important model of automated reasoning [2]. An AF is a pair \((A, R)\) where \(A\) is a set of abstract arguments and \(R \subseteq A \times A\) is a binary relation. Argumentation semantics are concerned with defining the acceptable arguments in a given AF. There are a number of semantics for different motivations, see [1] for an overview. Several problems related to argumentation semantics are computationally hard [5]. Algorithms for solving these problems can be either direct or indirect [3]. Indirect approaches are reduction-based methods such that the problem at hand is translated to another form to be solved by an off-the-shelf system. Direct approaches are dedicated algorithms that search for a solution to the input AF. In this paper we present ArgTools (short for Argumentation Tools), a system based on backtracking algorithms for solving problems under preferred, stable, complete and grounded semantics. In section 2 we give the definition of these semantics and specify the problems solved by ArgTools. Then, in section 3 we discuss the underlying approach of ArgTools. Lastly, in section 4 we conclude the paper.

2 Problems solved by ArgTools

We recall the definition of AFs, originally introduced in [4]. An argumentation framework (or AF) is a pair \((A, R)\) where \(A\) is a set of arguments and \(R \subseteq A \times A\) is a binary relation, see figure 1 for an example AF. We refer to \((x, y) \in R\) as \(x\) attacks \(y\) (or \(y\) is attacked by \(x\)). We denote by \(\{x\}^-\) respectively \(\{x\}^+\) the subset of \(A\) containing those arguments that attack (resp. are attacked by) the argument \(x\).
Given a subset $S \subseteq A$, then

- $x \in A$ is acceptable w.r.t. S if and only if for every $(y, x) \in R$, there is some $z \in S$ for which $(z, y) \in R$.
- S is conflict free if and only if for each $(x, y) \in S \times S$, $(x, y) \notin R$.
- S is admissible if and only if it is conflict free and every $x \in S$ is acceptable w.r.t. S.
- S is a preferred extension if and only if it is a \subseteq-maximal admissible set.
- S is a stable extension if and only if it is conflict free and for each $x \notin S$ there is $y \in S$ such that $(y, x) \in R$.
- S is a complete extension if and only if it is an admissible set such that for each x acceptable w.r.t. S, $x \in S$.
- S is the grounded extension if and only if it is the \subseteq-least complete extension.

ArgTools solves problems under preferred, stable, complete and grounded semantics. The problems are:

- Given an AF $H = (A, R)$, ArgTools enumerates all extensions of H.
- Given an AF $H = (A, R)$, ArgTools finds an extension of H.
- Given an AF $H = (A, R)$ and an argument $a \in A$, ArgTools decides whether a is in some extension of H.
- Given an AF $H = (A, R)$ and an argument $a \in A$, ArgTools decides whether a is in all extensions of H.

3 The approach of ArgTools

To give an idea about the approach of ArgTools we present algorithm 1 that enumerates all preferred extensions of a given AF. The algorithm is a backtracking procedure that traverses an abstract binary search tree. A core notion of the algorithm is related to the use of five labels: IN, OUT, MUST_OUT, BLANK and UNDEC. Informally, the IN label identifies arguments that might be in a preferred extension. The OUT label identifies an argument that is attacked by an IN argument. The BLANK label is for any unprocessed argument whose final label is not decided yet. The MUST_OUT label identifies arguments that attack IN arguments. The UNDEC label designates arguments which might not be included in a preferred extension because they might not be defended by any IN argument. To enumerate all preferred extensions algorithm 1 starts with BLANK as the default label for all arguments. This initial state represents the root node of the search tree. Then the algorithm forks to a left (resp. right) child (i.e. state)
by picking an argument, that is BLANK, to be labeled IN (resp. UNDEC). Every
time an argument, say x, is labeled IN some of the neighbour arguments’ labels
might change such that for every $y \in \{x\}^+$ the label of y becomes OUT and for
every $z \in \{x\}^- \setminus \{x\}^+$ the label of z becomes MUST_OUT. This process, i.e.
forking to new children, continues until there is no argument with the BLANK
label. At this point, the algorithm captures the set $S = \{x | \text{the label of } x \text{ is IN}\}$
as a preferred extension if and only if there is no argument with the MUST_OUT
label and S is not a subset of a previously found preferred extension (if such ex-
ists). Then the algorithm backtracks to find all preferred extensions. Figure 2
shows how algorithm 1 lists the preferred extensions of the AF of figure 1.

Algorithm 1: Enumerating all preferred extensions of an AF $H = (A, R)$.

1. $\text{Lab} : A \rightarrow \{\text{IN, OUT, BLANK, MUST_OUT, UNDEC}\}$; $\text{Lab} \leftarrow \emptyset$;
2. $\text{foreach } x \in A \text{ do } \text{Lab} \leftarrow \text{Lab} \cup \{(x, \text{BLANK})\}$;
3. $\text{foreach } (x, x) \in R \text{ do } \text{Lab}(x) \leftarrow \text{UNDEC}$;
4. $E \subseteq 2^A$; $E \leftarrow \emptyset$;
5. call build-preferred-extensions(Lab);
6. report E is the set of all preferred extensions;

7. procedure build-preferred-extensions(Lab)
8. if $\nexists x$ with $\text{Lab}(x) = \text{BLANK}$ then
9. if $\nexists x$ with $\text{Lab}(x) = \text{MUST_OUT}$ then
10. $S \leftarrow \{y | \text{Lab}(y) = \text{IN}\}$;
11. if $\forall T \in E$ $S \not\subseteq T \text{ then } E \leftarrow E \cup \{S\}$;
12. else
13. select any x with $\text{Lab}(x) = \text{BLANK}$;
14. $\text{Lab}' \leftarrow \text{Lab}$; $\text{Lab}'(x) \leftarrow \text{IN}$;
15. $\text{foreach } y \in \{x\}^+ \text{ do } \text{Lab}'(y) \leftarrow \text{OUT}$;
16. $\text{foreach } y \in \{x\}^- \setminus \{x\}^+ \text{ do } \text{Lab}'(y) \leftarrow \text{MUST_OUT}$;
17. call build-preferred-extensions(Lab');
18. $\text{Lab}' \leftarrow \text{Lab}$; $\text{Lab}'(x) \leftarrow \text{UNDEC}$;
19. call build-preferred-extensions(Lab');
20. end procedure

4 Conclusion

ArgTools has been coded in the C++ language; the source code and the usage are
available at http://sourceforge.net/projects/argtools/. For space limitation we did not discuss (in full detail) the underlying algorithms of ArgTools;
for the full presentation of the algorithms we refer the reader to [7, 6]. However,
ArgTools incorporates new enhancements that we plan to present in future in
an extended article.
4 Samer Nofal et al.

Fig. 2. Listing the preferred extensions of an AF using algorithm 1.

5 Acknowledgment

The first author, Samer Nofal, is supported by the Deanship of Scientific Research at the German Jordanian University (project number: SIC 18/2015).

References