
ConArg2: A Constraint-based Tool for
Abstract Argumentation

Stefano Bistarelli1, Fabio Rossi1, Francesco Santini2

1 Dipartimento di Matematica e Informatica, Università di Perugia
[bista,rossi]@dmi.unipg.it

2 Istituto di Informatica e Telematica, CNR, Pisa
francesco.santini@iit.cnr.it

Abstract. ConArg2 is a Constraint-programming tool oriented to the
solution of problems related to extension-based semantics in Abstract Ar-
gumentation. It exploits Gecode, an efficient C++ toolkit for developing
constraint-based systems and applications. The properties required by
semantics are encoded into constraints, and arguments are assigned to 1
(i.e., true) if belonging to a valid extension for that semantics. Search-
ing for solutions of problems (as enumerating extensions or checking
argument-acceptance) takes advantage of well-known techniques as local
consistency, different heuristics for trying to assign values to variables,
and complete search-tree with branch-and-bound.

Description

ConArg (Argumentation with Constraints) is a Constraint-programming tool
oriented to the solution of problems related to extension-based semantics in
Abstract Argumentation [10]. Since the first versions of the tool [1,7], we have
updated it with the purpose i) to solve further problems linked to weighted prob-
lems [6] and coalitions of arguments [9], and ii) to improve its performance over
classical semantics, by using a benchmark assembled with random graph mod-
els [2,3,4,5]. The first version of ConArg [7,8] is based on the Java Constraint
Programming solver3 (JaCoP), a Java library that provides a Finite Domain
Constraint Programming paradigm [12]. The tool comes with a graphical inter-
face, which allows the user to browse all the obtained extensions.

For the sake of performance, we have developed a second version of the
tool, i.e., ConArg2, which has been submitted to the International Competition
on Computational Models of Argumentation (ICCMA 2015)4. ConArg2 exploits
Gecode 4.4.0 5, an efficient C++ toolkit for developing constraint-based sys-
tems and applications. The properties of semantics are encoded into constraints,
and arguments are assigned to 1 (true) if belonging to a valid extension for
that semantics (0 otherwise). Searching for solutions takes advantage of classical

3 http://www.jacop.eu
4 http://argumentationcompetition.org/index.html
5 http://www.gecode.org

http://www.jacop.eu
http://argumentationcompetition.org/index.html
http://www.gecode.org

techniques, such as local consistency (through constraint propagation), different
heuristics for trying to assign values to variables, and complete search-tree with
branch-and-bound. We have also dropped the graphical interface of the first Java
system, having a textual output only.

ConArg2 can be currently used to

– enumerate all conflict-free, admissible, complete, stable, grounded, preferred,
semi-stable, ideal, and stage extensions;

– return one extension given one of the semantics above;
– check the credulous and sceptical acceptance for the conflict-free, admissible,

complete, and stable semantics;
– find the α-semantics described in [6].

From the home-page of ConArg6, it is possible to download both ConArg2
and ConArg (Java version). Moreover, we offer a visual Web-interface where to
draw abstract frameworks (arguments and attacks as directed edges), and then
solve some of the problems above. From the home-page it is possible to download
ConArg2 compiled for Linux i386 and x64 machines.

The basic command-line usage is described in Fig. 1. Some practical examples
are: to enumerate all admissible extensions: “conarg gecode -e admissible file.dl”,
to check the sceptical acceptance of argument “a” with the stable semantics
“conarg gecode -e stable -s a file.dl”, to compute all α-complete extensions [6]
with α = 3 “conarg gecode -e a-complete -a 3 file.dl”. An input file file.dl follows
the ASPARTIX format [11]: e.g., arg(a) for defining argument a, and att(a, b)
for declaring an attack from a to b.

We briefly show how we map AAFs to Constraint Satisfaction Problems
(CSPs) [12] in ConArg2. A CSP can be defined as a triple P = 〈V,D,C〉, where
C is a set of constraints defined over the variables in V , each with domain
D. Given a framework 〈A,R〉, we define a variable for each argument ai ∈ A
(V = {a1, a2, . . . , an}) and each of these arguments can be taken or not in an
extension, i.e., the domain of each variable is D = {1, 0}. As an example we
report conflict-free and stable constraints, which can be respectively used to
model the conflict-free and (in combination) stable semantics.

– Conflict-free constraints. If R(ai, aj) is in the framework we need to prevent
a solution to include both ai and aj : ¬(ai = 1 ∧ aj = 1). All other possible
variable assignments (a = 0∧ b = 1), (a = 1∧ b = 0) and (a = 0∧ b = 0) are
permitted.

– Stable constraints. If we have a node ai with multiple parents (in the Ar-
gumentation graph) af1, af2, . . . , afk, we need to add a constraint ¬(ai =
0∧ af1 = 0∧ · · · ∧ afk = 0). In words, if a node is not taken in an extension
(i.e. ai = 0), then it must be attacked by at least one of the taken nodes, that
is at least a parent of ai needs to be taken in a solution (that is, afj = 1).
Moreover, if a node ai has no parent in the graph, it has to be included in
every extension, i.e., ¬(ai = 0).

6 http://www.dmi.unipg.it/conarg/

http://www.dmi.unipg.it/conarg/

USAGE:
conarg gecode [− s <s t r i ng>] [−c <s t r i ng>] [−a <double>] −e <s t r i ng>
[−−] [−−ve r s i on] [−h] <s t r i ng>

Where :
−s <s t r i ng> , −−s k e p t i c a l <s t r i ng>
Test an argument f o r s c e p t i c a l acceptance (c o n f l i c t −f r e e , admiss ib l e ,

complete and s t ab l e semant ics only) .
−c <s t r i ng> , −−c redu lous <s t r i ng>
Test an argument f o r c redu lous acceptance (c o n f l i c t −f r e e , admiss ib l e ,

complete and s t ab l e semant ics only) .
−a <double> , −−alpha <double>
Alpha cons i s t ency budget (f o r alpha ex t en s i on s only) .
−e <s t r i ng> , −−extens i on <s t r i ng>
(r equ i r ed) Extens ions to be enumerated (c o n f l i c t −f r e e , admiss ib l e ,

complete , s tab l e , p r e f e r r ed , grounded , semi−s tab l e , i d ea l , stage , a−
c o n f l i c t −f r e e , a−admiss ib l e , a−complete , a−s tab l e , a−pre f e r r ed , a−
grounded semant ics) .

−−, −− i g n o r e r e s t
Ignore s the r e s t o f the l ab e l ed arguments f o l l ow ing t h i s f l a g .
−−ve r s i on
Disp lays ve r s i on in format ion and e x i t s .
−h , −−help
Disp lays usage in fo rmat ion and e x i t s .
<s t r i ng>
(r equ i r ed) Input F i l e in Aspart ix format .

Fig. 1. How to call ConArg2 from command-line.

Preferred extensions are found by assigning as more arguments as possible to
1 while searching for complete extensions. For this we use the Gecode heuristics
INT VAL MAX (such value is always 1 in our model).

Given a semantics, the credulous acceptance for an argument a is checked by
setting that argument to 1 and then halting as soon as an extension containing
a is found (i.e., a is credulously accepted). In the worst case, all the search tree
is explored without any result, i.e., a is not credulously accepted. Checking the
sceptical acceptance is a dual problem: given a semantics, we set a to 0 and then
we stop as soon as an extension containing a is found (i.e., a is not credulously
accepted). In the worst case, all the search tree is explored without any result,
i.e., a is sceptically accepted.

From the tests and comparisons we perform in [2,3,4,5], we obtain that
ConArg behaves fast on lower-order semantics (admissible, complete, and sta-
ble ones). Moreover, we notice that our approach proves to be more efficient on
some graph topologies than others. For instance, we deal with Barabasi-Albert
random graph-models (and trees) better than Kleinberg or Erdős-Rényi models,
considering the same nodes/edges ratio.

In the future we would like to extend ConArg2 to solve coalition-based prob-
lems [9], and labelling-based extensions, where having an assignment domain
wider than just {true, false} suggests the use of a constraint-based solver. Further
possible extensions concern Bipolar Argumentation Frameworks, or Constrained-
Argumentation Frameworks, where additional used-defined constraints can be
adopted to select only some extensions of a given semantics (e.g., “when a is in,

then also b must be in”). In addition, we are currently exploring applications of
our tool as a reasoning engine for Cybersecurity problems and Decision-making.

Acknowledgement. We thank the following people who provided help during
the development of the ConArg project: Carlo Taticchi, Luca Tranfaglia, Paola
Campli, and Daniele Pirolandi.

References

1. S. Bistarelli, D. Pirolandi, and F. Santini. Solving weighted argumentation frame-
works with soft constraints. In ERCIM International Workshop on Constraint
Solving and Constraint Logic Programming (CSCLP), volume 6384 of LNCS, pages
1–17, 2009.

2. S. Bistarelli, F. Rossi, and F. Santini. Benchmarking hard problems in random
abstract AFs: The stable semantics. In Computational Models of Argument - Pro-
ceedings of COMMA, volume 266 of Frontiers in Artificial Intelligence and Appli-
cations, pages 153–160. IOS Press, 2014.

3. S. Bistarelli, F. Rossi, and F. Santini. Efficient solution for credulous/sceptical
acceptance in lower-order dung’s semantics. In 26th IEEE International Conference
on Tools with Artificial Intelligence, (ICTAI), pages 800–804. IEEE Computer
Society, 2014.

4. S. Bistarelli, F. Rossi, and F. Santini. Enumerating extensions on random abstract-
AFs with ArgTools, Aspartix, ConArg2, and Dung-O-Matic. In Computational
Logic in Multi-Agent Systems - 15th International Workshop, CLIMA XV, volume
8624 of Lecture Notes in Computer Science, pages 70–86. Springer, 2014.

5. S. Bistarelli, F. Rossi, and F. Santini. A first comparison of abstract argumen-
tation reasoning-tools. In ECAI 2014 - 21st European Conference on Artificial
Intelligence, volume 263 of FAIA, pages 969–970. IOS Press, 2014.

6. S. Bistarelli and F. Santini. A common computational framework for semiring-
based argumentation systems. In ECAI 2010 - 19th European Conference on Ar-
tificial Intelligence, volume 215 of FAIA, pages 131–136. IOS Press, 2010.

7. S. Bistarelli and F. Santini. Conarg: A constraint-based computational framework
for argumentation systems. In 23rd IEEE International Conference on Tools with
Artificial Intelligence (ICTAI), pages 605–612. IEEE Computer Society, 2011.

8. S. Bistarelli and F. Santini. Modeling and solving AFs with a constraint-based tool:
Conarg. In Theory and Applications of Formal Argumentation (TAFA), volume
7132 of LNCS, pages 99–116. Springer, 2012.

9. S. Bistarelli and F. Santini. Coalitions of arguments: An approach with constraint
programming. Fundam. Inform., 124(4):383–401, 2013.

10. P. M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artif. Intell.,
77(2):321–357, 1995.

11. U. Egly, S. A. Gaggl, and S. Woltran. Answer-set programming encodings for
argumentation frameworks. Argument & Computation, 1(2):147–177, 2010.

12. F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming (Foun-
dations of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA, 2006.

	ConArg2: A Constraint-based Tool for Abstract Argumentation

