
CoQuiAAS: Application of Constraint Programming for
Abstract Argumentation ?

Jean-Marie Lagniez, Emmanuel Lonca, and Jean-Guy Mailly

CRIL – U. Artois, CNRS
Lens, France

{lagniez,lonca,mailly}@cril.fr

Abstract. This paper is a description of our proposal to use Constraint Program-
ming techniques to develop a software library dedicated to argumentative reason-
ing. We present a library which offers the advantages to be generic and easily
adaptable.

1 Introduction

An abstract argumentation framework (AF) [1] is a directed graph where the nodes rep-
resent abstract entities called arguments and the edges represent attacks between these
arguments. The meaning of such a graph is determined by an acceptability semantics,
which indicates which properties a set of arguments must satisfy to be considered as a
”solution” of the problem; such a set of arguments is then called an extension.

To compute usual reasoning tasks (credulous or skeptical acceptance of an argu-
ment, computation of an extension, enumeration of all the extensions) for the classical
semantics (grounded, stable, preferred, complete), we propose to use Constraint Pro-
gramming techniques, since this domain already proposes some very efficient solutions
to solve high complexity combinatorial problems. We are in particular interested in
propositional logic and some formalisms derived from it. More precisely, we use some
CNF formulae to solve problems from the first level of the polynomial hierarchy, and
some encodings in the Partial Max-SAT formalism for higher complexity problems. We
take advantage of these encodings to solve these reasoning tasks, using some state-of-
the-art approaches and software, which have proven their practical efficiency.

We have encoded those approaches for argumentation-based reasoning in a soft-
ware library called CoQuiAAS. The aim of CoQuiAAS is dual. First, we provide some
efficient algorithms to tackle the main requests for the usual semantics. Then, our frame-
work is designed to be upgradable: one may easily add some new parameters (request,
semantics), or realize new algorithm for the tasks which are already implemented. A
first version is available on-line: http://www.cril.univ-artois.fr/coquiaas.

2 Example of Logical Encoding

We take advantage of the encodings proposed by [2] to design an approach to compute
the extensions of an argumentation framework, and also to determine if an argument is
? This work benefited from the support of the project AMANDE ANR-13-BS02-0004 of the

French National Research Agency (ANR).

skeptically or credulously accepted by an AF F . In this section, we only examplify our
approach on the stable semantics. Our encodings are based on propositional logic, de-
fined with the usual connectives on the set of Boolean variables VA = {xai | ai ∈ A}.
The propositional variable xai denotes the fact the argument ai is accepted by F . For
a matter a readability, we use in the following ai rather than xai

. ΦF
st is a propositional

formula from this language such that its models match the stable extensions of F .
In addition to computing a single extension and enumerating every extension, this

encoding also allows us to answer the other requests for the stable semantics:

– Computing one (resp. each) stable extension of F is equivalent to the computation
of one (resp. each) model of ΦF

st.
– ai is credulously accepted by F w.r.t. the stable semantics iff ΦF

st ∧ ai 6` ⊥.
– ai is skeptically accepted by F w.r.t. stable semantics iff ΦF

st ∧ ¬ai ` ⊥.

A similar reasoning scheme from Besnard and Doutre encoding of complete seman-
tics lead us to define a procedure for each reasoning task under the complete semantics.
It is the case that unit propagation on the encoding of complete semantics allows to per-
form grounded reasoning, while preferred reasoning requires a transformation of the
complete semantics encoding into a Partial Max-SAT instance such that each preferred
extension correspond to one of its Maximal Satisfiable Set (MSS).

3 CoQuiAAS : Design of the Library

We have chosen the language C++ to implement CoQuiAAS to take advantage of the
Object Oriented Programming (OOP) paradigm and its good computational efficiency.
First, the use of OOP allows us to give CoQuiAAS an elegant conception, which is
well suited to maintain and upgrade the software. Moreover, C++ ensures having high
computing performances, which is not the case of some other OOP languages. At last,
it makes easier the integration of coMSSExtractor, a C++ underlying tool we used to
solve the problems under consideration.

coMSSExtractor [3] is a software dedicated to extract MSS/coMSS pairs from a
Partial Max-SAT instance. As coMSSExtractor integrates the Minisat SAT solver [4] –
which is used as a black box to compute MSSes – the API provided by coMSSExtractor
allows us to use the API provided by Minisat to handle the requests that require a simple
SAT solver. This way, CoQuiAAS does not need a second solver to compute the whole
set of requests it is attended to deal with.

The core of our library is the interface Solver, which contains the high-level meth-
ods required to solve the problems. The method initProblem makes every required
initialization given the input datas. In the case of our approaches, it initializes the SAT
solver or the coMSS extractor with the logical encoding corresponding to the AF, the
semantics and the reasoning task to perform. The initialization step depends on the con-
crete realization of the Solver interface returned by the SolverFactory class, given the
command-line parameters of CoQuiAAS. The method computeProblem is used to
compute the result of the problem, and displaySolution prints the result into the
dedicated output stream using the format expected by the competition.

Solver

initProblem(AF)
computeProblem()
displaySolution()

SATBasedSolver

hasAModel()
getModel()
addBlockingClause()

SolverFactory

getSolverInstance(sem,prob,opt)

DefaultSATBasedSolver ExternalSATBasedSolver

CoMSSBasedSolver

DefaultCoMSSBasedSolver

ExternalCoMSSBasedSolver

CompleteSemanticSolver StableSemanticSolver GroundedSemanticSolver PreferredSemanticSolver

Fig. 1. Simplified class diagram of the solver part of CoQuiAAS

The abstract class SATBasedSolver (respectively CoMSSBasedSolver) gathers the
features and initialization common to each solver based on a SAT solver (respectively
a coMSS extractor), for instance the method hasAModel which returns a Boolean
indicating if the SAT instance built from the argumentation problem is consistent or
not. Among the subclasses of SATBasedSolver, we built DefaultSATBasedSolver and
its subclasses, which are dedicated to use the API of coMSSExtractor to take advan-
tage of its SAT solver features, inherited from Minisat, to solve the problems. If the
user wants to call any other SAT solver rather than coMSSExtractor – as soon as the
given semantics is compatible with SAT encodings – a command-line option leads the
SolverFactory to generate an instance of the class ExternalSATBasedSolver, which also
extends SATBasedSolver. This solver class is initialized with a command to execute so
as to call any external software able to read a CNF formula written in the DIMACS
format, and to print a solution using the format of SAT solvers competitions. This class
allows to execute the command provided to CoQuiAAS to perform the computation
related to the problem. This feature enables, for instance, the comparison between the
relative efficiency of several SAT solvers on the argumentation instances. The same
pattern is present in the coMSS-based part of the library, with the class CoMSSBased-
Solver, which can be instantiated via the default solver DefaultCoMSSBasedSolver,
which uses coMSSExtractor, or via the class ExternalCoMSSBasedSolver to use any
external software whose input and output correspond to coMSSExtractor ones, for the
pairs request/semantics corresponding to our coMSS-based approaches.

Our design is flexible enough to make CoQuiAAS evolutive. For instance, it is sim-
ple to create a solver based on the API of another SAT solver than coMSSExtractor:

creating a new class MySolver which extends SATBasedSolver (and also, the interface,
Solver which is the root of each solver) and implementing the required abstract meth-
ods (initProblem, hasAModel, getModel and addBlockingClause) is the
only work needed. It is also possible to extend directly the class Solver and to imple-
ment its methods initProblem, computeProblem and displaySolution to
create any kind of new solver. For instance, if we want to develop a CSP-based approach
for argumentation-based reasoning, using encodings such that those from [5], we just
need to add a new class CSPBasedSolver which implements the interface Solver, and to
reproduce the process which lead to the conception of the SAT-based solvers, but using
this time the API of a CSP solver (or an external CSP solver).

Once the solver written, we just need to give an option which executes CoQuiAAS,
and to update the method getSolverInstance in the SolverFactory, which knows
the set of the command-line parameters (stored in the map opt). For instance, the pa-
rameter -solver MySolver can be linked to the use of the class MySolver dedi-
cated to the new solver. The code given below is sufficient to do that.

i f (o p t [”−s o l v e r ”] == ” MySolver ”) re turn new MySolver (. . .) ;

In the way we conceived the interface Solver, it is supposed that a solver is dedicated
to a single problem and a single semantics. Thus, it is possible to implement a class
which executes a unique algorithm, suited to a single pair (problem,semantics). For
instance, [6] describes a procedure which determines if a given argument belongs to
the grounded extension of an AF. We can consider the possibility to implement a class
GroundedDiscussion which realizes the interface Solver to solve the skeptical decision
problem under the grounded semantics using this dedicated algorithm.

This default behaviour of CoQuiAAS does not prevent the implementation of classes
able to deal with several request for a given semantics, as soon as the SolverFactory
returns an instance of the right solver for the considered semantics. Thus, thanks to the
possibility to tackle each problem for a given semantics through a SAT instance (or a
MSS problem), we have simplified the design of our solvers using a single class for
each semantics, taking advantage of the template design pattern.

References

1. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming, and n-person games. Artificial Intelligence 77(2) (1995) 321–
357

2. Besnard, P., Doutre, S.: Checking the acceptability of a set of arguments. In: NMR. (2004)
59–64

3. Grégoire, É., Lagniez, J.M., Mazure, B.: An experimentally efficient method for (MSS,
CoMSS) partitioning. In: AAAI. (2014) 2666–2673

4. Eén, N., Sörensson, N.: An extensible sat-solver. In: SAT. (2003) 502–518
5. Amgoud, L., Devred, C.: Argumentation frameworks as constraint satisfaction problems.

Annals of Mathematics and Artificial Intelligence 69(1) (2013) 131–148
6. Caminada, M., Podlaszewski, M.: Grounded semantics as persuasion dialogue. In: COMMA.

(2012) 478–485

