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Abstract. This document provides an outline of EqArgSolver, a solver
for enumeration and decision problems in argumentation theory. EqArg-
Solver is implemented from scratch as a self-contained application in
C++ without the use of any other external solver (e.g., SAT, ASP,
CSP) or libraries. Even though the solver uses the discrete version of
the Gabbay-Rodrigues Iteration Schema [4] for the propagation of la-
bels through an argumentation network, all operations are performed
directly on the graph and thus EqArgSolver uses a direct approach to
argumentation problems in the sense of [2].

1 Introduction

EqArgSolver is a computer application that can be used to solve the following
enumeration and decision problems in argumentation theory: i) Given an argu-
mentation network 〈S,R〉, to produce one or all of the extensions of the network
under the grounded, complete, preferred or stable semantics; and ii) Given an
argument X ∈ S, to decide whether X is accepted credulously or sceptically ac-
cording to one of these semantics. Problems to EqArgSolver must be submitted
following probo’s syntax (see [1]).

EqArgSolver builds and expands on the prototype GRIS [8] submitted to
the 1st International Competition on Computational Models of Argumentation
(http://argumentationcompetition.org/2015/), but includes two technical
advances that result in significant improvements in performance and function-
ality. Firstly, EqArgSolver uses the discrete version of the Gabbay-Rodrigues
Iteration Schema (dGR-iteration schema) [4], which can be implemented in a
much more efficient way than its full-fledged counterpart [3]. Secondly, the com-
ponent in GRIS responsible for computing preferred extensions (and based on
Caminada and Modgil’s algorithm for the computation of preferred labellings
[6]) has been replaced by a novel algorithm that can compute all complete ex-
tensions and hence EqArgSolver is now also able to handle the complete and
preferred semantics. An ad hoc mechanism for checking whether a preferred ex-
tension is also stable enhances EqArgSolver’s functionality further allowing the
solver to handle decision and enumeration problems in the grounded, complete,
preferred and stable semantics.

EqArgSolver computes extensions by labelling arguments as accepted (in),
rejected (out), or undecided (und). However, instead of the labels in, out, and
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und, EqArgSolver uses the numerical values {0 = out, 1 = und, 2 = in} and
hence all labelling manipulations are done in terms of integer operations, which
can be implemented very efficiently. Without loss of generality, we will refer to
the values as labels.

The solver initially decomposes the input argumentation network into strongly
connected components (SCCs) and arranges the components into layers as de-
scribed in [5]. Each layer is then processed in succession. The dGR-iteration
schema is employed in what we call a grounding module: the module propagates
a (base) solution f for arguments in layers up to k − 1 under a particular se-
mantics to the nodes of a SCC in layer k. Provided f corresponds to a legal
assignment, the result of the propagation to the arguments in the SCC will also
be legal. However, the grounding process may leave some arguments in the SCC
with label und. These undecided arguments could have been labelled in or out
in some (larger) complete extension and it is this part of the process that is
carried out by the new proposed algorithm. The partial solutions thus obtained
are then combined to compute all extensions of the network as a whole using
what Liao calls horizontal and vertical combinations of partial solutions [5].

2 System Overview

EqArgSolver initially reads the problem specification passed as command line
arguments, validates it and then validates the input graph itself, exiting in case
of error.

The basic workflow of the computation is depicted in Fig. 1. The solver starts
by computing the SCCs of the network using a slightly adapted version of Tar-
jan’s algorithm [7] and arranging them into layers that can be used in successive
computation steps similar to what is described in [5]. Once the network is ar-
ranged into layers, in decision problems the solver can identify at what layer the
computation can be terminated according to the depth of the input argument.
Hence layers are successively processed until the maximum depth needed to es-
tablish the solution to the problem submitted is reached. This strategy proves
particularly efficient in decision problems where the argument in question be-
longs to a layer of low depth. A number of other “shortcuts” allowing early
termination are employed according to the semantics of the problem at hand.

The computation of the solutions to the problems in the grounded seman-
tics does not require the decomposition of the network into layers. In principle,
the dGR-iteration schema can be applied to the entire network to produce its
grounded extension upon completion. However, since the decomposition of the
network into SCCs and their arrangement into layers can be performed very
efficiently, the extra decomposition cost is offset by performance gains obtained
through the computation by layers in all but a few special cases, and is therefore
our preferred choice for all semantics. It is technically possible to bypass the
decomposition and compute the grounded extension more efficiently by simply
excluding from the computation some nodes as soon as their labels converge.
However, the computation of the grounded semantics is so efficient as it is, that
we decided not to optimise it further in this version.
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Generating All Complete Extensions. As we mentioned, the grounding
module may leave some nodes with label und which in a larger extension could
potentially be labelled in. Our algorithm attempts to label in all such undecided
nodes, propagating the results as required. When this is employed judiciously, it
generates all complete extensions. A careful analysis of the solutions generated
can then be employed to identify the extensions that are preferred and stable.
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Fig. 1. EqArgSolver’s basic workflow.

EqArgSolver’s URL: http://nms.kcl.ac.uk/odinaldo.rodrigues/eqargsolver

3 Functionality and Design Choices

As mentioned in Section 1, EqArgSolver can tackle enumeration and decision
problems (skeptical and credulous) of the following argumentation semantics:
grounded, complete, preferred and stable. In addition, EqArgSolver can also pro-
vide solutions for Dung’s Triathlon, i.e., to compute in succession the grounded
extension, all stable extensions, and all preferred extensions of an argumentation
network 〈S,R〉.

In terms of input graph format, EqArgSolver only accepts the trivial graph
format, which is basically a text file containing a sequence of node designators
one per line, followed by the separator “#” in its own line, and then followed
by a list of pairs of nodes, a pair per line, where the first element of each pair is
the identifier of the source node of an edge in the graph (the attacker) and the
second element is the identifier of its target node (the node being attacked).

In an abstract way, one can think of EqArgSolver’s internal graph representa-
tion as an enhanced adjacency list. The extra bits in the list provide information
to speed up a number of operations that are used frequently in the computation
of solutions. More specifically, each argument is assigned an internal identifier
which is an unsigned integer. Each internal identifier is then associated with the
following data structure:
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struct

ArgNode_T {

int layer;

ExtArgId_T extArgId;

vector<IntArgId_T> attsIn;

vector<IntArgId_T> attsOut;

};

where layer gives the graph layer to which the associated argument belongs;
extArgId gives the external argument identifier (the string given in the input
file); and attsIn and attsOut give, respectively, the list of incoming attacks and
the list of outgoing attacks of the argument.

Each internal node identifier is associated with a corresponding structure of
the above type using an associative container (a C++ unordered map). For effi-
ciency, a second associative container is created using the external node identifier
as key and having the internal node identifier as value.

In order to avoid resizing of the container, which in large graphs can be very
inefficient, EqArgSolver looks ahead at the number of nodes in the graph so that
a sufficient number of buckets in the hash map is allocated before the graph is
actually created. This ensures that even graphs of up to 100,000 nodes can be
created in a few seconds.

A number of further improvements can be made to EqArgSolver. In tests, we
have identified a number of randomly generated graphs that proved particularly
difficult to handle. Work is under way to refine the complete extension generator
algorithm further.
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