
argmat-clpb: Solve Argumentation Problems using
Constraint Logic Programming over Boolean variables?

Fuan Pu, Guiming Luo, and Yucheng Chen

School of Software, Tsinghua University, Beijing, China
Pu.Fuan@gmail.com, gluo@tsinghua.edu.cn, chenyc14@163.com

Abstract. This paper presents a system description of argmat-clpb, which
chooses Constraint Logic Programming over Boolean variables as its logic en-
gine to encode and solve argumentation problems based on Boolean matrix al-
gebra. We describe the main theory behind argmat-clpb, the main software
architecture of argmat-clpb, and a simple usage for argmat-clpb.

1 Boolean matrix algebra representation

The basic elements of abstract argumentation framework (AF) [1] can be represented by
Boolean matrices (see [2]). Let∆ = 〈X ,R〉 be a finite AF withX = {x1, x2, · · · , xn},
and let B = {0, 1} be the Boolean domain.

• Assume S ⊆ X , then we can represent S by an n × 1 Boolean vector s ∈ Bn×1,
whose row indices index the elements inX , such that the ith component of s, denoted
by si, is defined by si

def
= 1 if xi ∈ S; otherwise si

def
= 0.

• The attack relation R on X for ∆ can be represented by an n × n Boolean matrix
A ∈ Bn×n, whose row and column indices index the elements of X , respectively,
such that the entry Aij is defined by Aij

def
= 1 if xjRxi; otherwise Aij

def
= 0. We

call A the attack matrix of∆. It can be seen that A is the transpose of the adjacency
matrix of the argument graph of ∆.

Obviously, each subset ofX is one-to-one correspondence to a Boolean vector in Bn×1.
In this paper, thus, we may mix a subset and a Boolean vector whenever it is convenient.

The Boolean operations on Boolean variables, such as “+” (logical or), “∗” (logical
and), “¬” (logical not), “6” (logical implication), “⊕” (logical disequality) and “≡”
(logical equivalence), can be applied on Boolean vectors element-wisely. The multipli-
cation of A and s, denoted by A� s, is a Boolean vector t ∈ Bn×1 defined by

ti =

n∑
j=1

Aij ∗ sj (1)

Then, some important functions of ∆ can be also represented by Boolean matrices
and Boolean operations, see Table 1 (for more details, please refer to [2]).

? This work was supported by the Fund NSFC61572279.



Table 1. Boolean matrix representation for some important functions

Functions Meaningness Boolean matrix representation

R+(S) returns all arguments that are attacked by S R+(s)
def
= A� s

R−(S) returns all arguments that attack S R−(s)
def
= AT � s

N (S) returns all arguments that not attacked by S N (s)
def
= ¬R+(s) = ¬(A� s)

I(S) returns all arguments that do not attack S I(s) def
= ¬R−(s) = ¬(AT � s)

F(S) returns all arguments that are defended by S F(s) def
= N (N (s)) = ¬

(
A� ¬(A� s)

)

2 Encoding Dung’s Acceptability Semantics

Now, we encode Dung’s acceptability semantics via Boolean matrix algebra. Each se-
mantics is encoded as a finite array of Boolean expressions (constraints) with a vector
of Boolean variables. The goal is to find an assignment to the vector of all Boolean vari-
ables so that all constraints evaluate to 1, i.e., be satisfied. This is a typical Boolean con-
straint satisfaction problem. If no such satisfying assignment exists, then these Boolean
constraints have no solution.
Conflict-free Boolean constraints. Boolean vector s is conflict-free iff any of the
equivalent Boolean constraints below is satisfied:

s ∗ R+(s) ≡ 0 [CF1]

s 6 N (s) [CF2]

s 6 I(s) [CF3]

Stable Boolean constraints. Boolean vector s is a stable extension iff any of the equiv-
alent Boolean constraints below is satisfied:

s ≡ N (s) [ST1] s ⊕ R+(s) [ST2]

Admissible Boolean constraints. Boolean vector s is admissible iff any of the equiva-
lent Boolean constraints below is satisfied:{

[CF?]
s 6 F(s) [AD1]{
[CF?]
R−(s) 6 R+(s)

[AD2]

s 6 N (s) ∗ F(s) [AD3]

s 6 F (s ∗ N (s)) [AD4]

s 6 N (s+N (s)) [AD5]

where [CF?] is any conflict-free Boolean constraint.
Complete Boolean constraints. Boolean vector s is complete iff any of the equivalent
Boolean constraints below is satisfied:



{
[CF?]
s ≡ F(s) [CO1]

s ≡ N (s) ∗ F(s) [CO2]

s ≡ F (s ∗ N (s)) [CO3]

s ≡ N (s+N (s)) [CO4]

s ⊕ R+ (s+N (s)) [CO5]

in which [CF?] is a conflict-free Boolean constraints.

3 System Architecture

In this work, we choose Constraint Logic Programming over Boolean variables (CLPB)
systems [3], the modern Constraint Programming solvers, as our tool to solve these
Boolean constraints. CLPB is a declarative formalism for reasoning about propositional
formulas. It is an instance of the general CLP scheme that extends logic programming
with reasoning over Boolean domains [4]. Many Prolog systems (e.g., SWI-Prolog1,
CHIP, SICStus Prolog) are equipped with CLPB systems. The solver contains predi-
cates for checking the consistency and entailment of a constraint with respect to previ-
ous constraints, and for computing particular solutions to the set of previous constraints.
We select CLPB mainly based on following critical reasons: (1) CLPB systems are alge-
braically oriented, and thus they are more suitable for encoding and solving our Boolean
algebra problems; (2) CLPB systems provide plentiful operations on Boolean variables,
and have abilities to handle any Boolean expressions with little conversion; (3) CLPB
systems provide more flexible interfaces, and they can support variable quantification,
conditional answers and easy symbolic manipulation of formulas.

CLPB logic engine

Argumentation System

Attack matrix
Conditional variables

Boolean‐vector 
extension

Input:
• apx
• tgf OutputC++

Prolog

argmat-clpb

Fig. 1. argmat-clpb system architecture

Figure 1 shows the system architecture of argmat-clpb, which consists of two
main parts. The argumentation system, implemented by C++, is to parse and manage
the information of an AF. The argumentation system also realizes the reasoning tasks of
grounded semantics by iteratively calculating the Boolean-matrix-based characteristic
function F(s) from Boolean vector s(0) = 0n (i.e. the Boolean vector representation of
the emptyset),

s(k) = F(s(k−1)) = ¬
(
A� ¬(A� s(k−1))

)
.

1 http://www.swi-prolog.org/



Since the grounded extension is included in all complete extensions and stable exten-
sions (if exists), and all arguments that are attacked by the grounded extension are not in
any complete and stable extensions, we thus can use the grounded extension to product
some initially conditional variables for speeding the processes of solving complete and
stable semantics.

The CLPB logic engine is the core logic of argmat-clpb, responsible for encod-
ing, solving and reasoning argumentation problems of the four semantics mentioned
in Section 2. The CLPB logic engine is implemented using Prolog language based on
SWI-Prolog platform (see [5] for a system description). It receives an attack matrix of
an AF, as well as some conditional variables, from the argumentation system, and re-
turns Boolean-vector extensions to the argumentation system. Then, the argumentation
system parses the Boolean-vector extension(s) and outputs the results with specified
format. All previously mentioned Boolean constraint models have been encoded using
the CLPB engine, and the codes have been submitted into an online Prolog interpreter.2

You can try our codes on your browser without installing any components on your sys-
tem. For more implementation details, please refer to [2]. All source codes is available
on the website of our project argumatrix3.

4 Usage

argmat-clpb currently implements all reasoning tasks of the above four semantics,
as well as grounded semantics, but conflict-free and admissible semantics are not part of
the ICCMA2017. argmat-clpb supports the standard interface of the requirements
of ICCMA2017, and supports all encodings mentioned in this work. You can test our
encodings by specifying the encoding number after the problem option. For instance,
you can use the following command to test the encoding [CO1] for complete semantics:

./argmat-clpb.out -p EE-CO1 -f <file> ...

Of course, you can directly use the option “-p EE-CO”, since we have specified a
default encoding for the semantics. The same goes for stable semantics.

References
1. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic

reasoning, logic programming and n-person games. Journal of Artificial Intelligence 77(2)
(September 1995) 321–357

2. Fuan, P., Guiming, L., JIANG, Z.: Encoding argumentation semantics by boolean algebra.
IEICE Transactions on Information and Systems 100(4) (2017) 838–848

3. Codognet, P., Diaz, D.: A simple and efficient boolean solver for constraint logic program-
ming. Journal of Automated Reasoning 17(1) (1996) 97–128

4. Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. The journal of logic pro-
gramming 19 (1994) 503–581

5. Triska, M.: The boolean constraint solver of SWI-Prolog: System description. In: FLOPS.
Volume 9613 of LNCS. (2016) 45–61

2 http://swish.swi-prolog.org/p/argmat-clpb.pl.
3 https://sites.google.com/site/argumatrix/


