
argmat-dvisat: A division-based algorithm framework
for solving argumentation problems using SAT?

Fuan Pu, Hang Ya, and Guiming Luo

School of Software, Tsinghua University, Beijing, China
Pu.Fuan@gmail.com, yah16@mails.tsinghua.edu.cn,

gluo@tsinghua.edu.cn

Abstract. argmat-dvisat provides a division-based algorithm framework to
compute the reasoning problems in abstract argumentation based on SAT solvers.
It firstly divides a (big) argumentation framework into an ordered sequence of
(small) sub-frameworks according to the directionality of argumentation. Then,
each sub-framework is computed based on its previous sub-frameworks in the se-
quence using SAT solvers. The solutions of the whole argumentation framework
are yielded by integrating the solutions of all sub-frameworks. argmat-dvisat
currently supports all reasoning tasks of ST, CO, PR, GR and ID semantics, as well
as the special task “Dung’s Triathlon”.

Description

It has been shown that most computational problems in abstract argumentation frame-
works are at least as hard as the NP-complete problems (see [1, 2]). The time required
to solve these problems using any currently known algorithm may grow exponentially
as the size of the problems increases. When faced with a big argumentation framework,
the only approach, we can possibly expect to solve it, is to divide it into a sequence
of solvable sub-frameworks. Our argmat-dvisat is such a solver. It provides a
division-based algorithm framework for solving the reasoning tasks in abstract argu-
mentation:

• First, the entire argumentation framework is decomposed into a sequence of small
sub-frameworks. The data structure of these sub-frameworks is shown in Figure 1, in
which compID represents the ID of a sub-framework, argIdxs is a vector and records
the indexes of the arguments in this sub-framework, and subsols is used to store the
solutions of this sub-framework. Here, we do not record the attack relations of the
sub-frameworks, since we can access these relations from the entire argumentation
framework according to argIdxs. The division is based on its strongly connected com-
ponents (SCCs). Each component can be seen as a sub-framework. According to the
concept of directionality in argumentation [3], some dependencies may exist within
these sub-frameworks. Therefore, we topologically organize these sub-frameworks
into an ordered sequence, in which each sub-framework depends on all its previous
sub-frameworks in the sequence. In other words, solving the current sub-framework
must require that its previous sub-frameworks have been solved, since the status of
some arguments in this sub-framework depend on the arguments in these previous
sub-frameworks.

? This work was supported by the Fund NSFC61572279.

1 typedef struct {
2 int compID; /**< The ID of the sub-framework */
3 vector<int> argIdxs; /**< The list of argument ID in the subAF */
4 queue<bitvector> subsols; /**< Used to store the solutions of the subAF */
5 } SubAF_t;

Fig. 1. The data structure of sub-frameworks

• Second, we propose an algorithm framework to solve these sub-frameworks accord-
ing to various reasoning tasks and various semantics. Taking the task to enumerate
all stable extensions for example, its division-based algorithm is shown in Algo-
rithm 11, in which each sub-framework is firstly encoded into CNF formulas (for
the encoding approaches, see the description of our other solver argmat-sat also
submitted to ICCMA-2017), and then a SAT solver is exploited to find the solutions
of the sub-framework. Of course, these sub-frameworks can also be solved using
other solvers. Note that each solution of a sub-framework indicates a different branch.
Hence, the encoding and solving processes is dynamic, since they rely on the solu-
tions of the previous sub-frameworks. We ensure this requirement by maintaining a
global Boolean vector extension x. On the one hand, this approach can record the
information of the current branch. On the other hand, it allows the two processes to
be able to access the dependent variables directly from x. The algorithm is initialized
by solving the sub-framework at level zero (line 4), and then uses a big loop (line 6-
25) to search solutions of all the remaining sub-frameworks starting from level one.
When the search backs to the level zero (line 7), the entire traversal is finished, and
the big loop terminates. If the search goes to the final level (line 9), it means that all
sub-frameworks are solved, and then all extensions at this branch are added into the
result set (line 11 and 12). When all extensions at this branch are enumerated, the
search backs to the last level and prepares to start a new branch (line 14). Now let
us see the search goes into the intermediate levels (line 17-23). If the search of the
last level is not completed, then we start a new branch by moving and integrating
one of the solutions at last level into x (line 18), and solve the sub-framework in cur-
rent level according to the newly changed x (line 19). After that, the search goes to
next level in order to continue expanding all branches of the current sub-framework
(line 20). If the search of the last level is completed, the search continues to backup
(line 22).

In current version of argmat-dvisat, this algorithm framework has also been
applied for solving CO, PR, GR and ID semantics. For these semantics, another global
Boolean vector, corresponding to the auxiliary variable vector in the CNF encoding of
the CO semantics, is introduced to maintain the branch information. The way for search-
ing the maximal semantics is referred from the assumption-based approach, which is
described in argmat-sat. Our argmat-dvisat also supports the special track
“Dung’s Triathlon”.

1 In some literatures, the stable semantics is shown to be incompatible with the concept of di-
rectionality. In argmat-dvisat, however, we show that the stable semantics can also be
computed based on this concept.

Algorithm 1 The algorithm framework to enumerate all ST extensions
Require: ∆ = 〈X ,R〉— input an AF with |X | = n;
Ensure: EST(∆) — return all ST extensions of ∆;
1: Divide ∆ into a sequence of sub-frameworks, denoted by subAFs[0, 1, · · · ,m− 1];
2: EST(∆)← ∅;
3: Initialize the Boolean vector extension x← 0n;
4: Solve subAFs[0] using SAT solvers, and store the solutions into subAFs[0].subsols;
5: i← 1; . Specify the start point
6: while true do
7: if i==0 then
8: Traversal ends, when i is changed to zero;
9: else if i == m then . i == m means all sub-frameworks are solved

10: if subAFs[i− 1].subsols is not empty then
11: Move and integrate a sub-solution of subAFs[i− 1].subsols into x;
12: Now, x is a stable extension, and thus is added into EST(∆);
13: else
14: i← i− 1, i.e., back to the last sub-framework;
15: end if
16: else
17: if subAFs[i− 1].subsols is not empty then
18: Move and integrate a sub-solution of subAFs[i− 1].subsols into x;
19: Solve subAFs[i] according to x, and store its solutions into subAFs[i].subsols;
20: i← i+ 1, i.e., move to the next sub-framework;
21: else
22: i← i− 1, i.e., back to the last sub-framework;
23: end if
24: end if
25: end while
26: return EST(∆);

argmat-dvisat is implemented by C++, and meets the standard command in-
terface of the requirements of ICCMA-2017. Its SAT engine is selected as CryptoMin-
iSat52. argmat-dvisat is multi-threading and cross-platform (Windows and Unix
OS). The source codes can be found on the website of our project argumatrix3.

References

1. Dunne, P.E., Wooldridge, M.: Complexity of abstract argumentation. In: Argumentation in
artificial intelligence. Springer (2009) 85–104

2. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics. The
Knowledge Engineering Review 26 (12 2011) 365–410

3. Baroni, P., Giacomin, M.: On principle-based evaluation of extension-based argumentation
semantics. Artificial Intelligence 171(10-15) (2007) 675–700

2 https://github.com/msoos/cryptominisat
3 https://sites.google.com/site/argumatrix/

