
argmat-mpg: Modeling and Programming
Argumentation Problems with Gecode?

Fuan Pu, Hang Ya, and Guiming Luo

School of Software, Tsinghua University, Beijing, China
Pu.Fuan@gmail.com, yah16@mails.tsinghua.edu.cn,

gluo@tsinghua.edu.cn

Abstract. argmat-mpg is a software library for utilizing Gecode to solve ar-
gumentation reasoning tasks. This description presents the approaches to model
and program argumentation problems as Boolean constraint satisfaction problems
based on Boolean matrix algebra, and a variable selection strategy to speed up the
calculation process.

1 Modeling and programming with Gecode

There are numerous works showing that each Dung’s argumentation semantics [1] can
be viewed as a Boolean Constraint Satisfaction Problem (BCSP). In this paper, we
mainly concern on the Boolean Matrix Algebra (BMA) based constraint models pro-
posed in [2], since these constraint models have an intuitive connection with argumen-
tation semantics, and are easy to use and understand.

Gecode is a set of C++ libraries1. It provides a generic constraint development en-
vironment for constraint-based systems and applications, in which the models (BCSP’s
in this context) are C++ programs that must be compiled with Gecode libraries and ex-
cuted to get a solution. Gecode can support almost any constraint over Booleans. By
using Gecode, we not only program the BMA-based constraint models in [2], but also
program the CNF conversations generated from these constraint models (see the de-
scription of our other solver argmat-sat also submitted to ICCMA-2017). Figure 1
shows the programming model of the CO semantics using the BMA-based encoding
[CO2]. This model is programmed using the MiniModel, a package of Gecode, which
provides a more natural syntax to construct expressions and constraints using the stan-
dard C++ operators (see Fig. 2). Using these syntax, the function neutrality (in line 4)
implements the multiplication of a Boolean attack matrix and a Boolean (variable or
expression) vector, and the function encode CO bma (in line 19) gives the final pro-
gramming model. Clearly, this model uses |X | Boolean variables, in which X is the
argument set in the argumentation framework ∆ = 〈X ,R〉.

Figure 3 presents the programming model for the complete semantics using the CNF
encoding of [CO1] with 2× |X | variables (see the clauses for argument xi in Eqn. (1)).
However, this model is not programmed by MiniModel, but by another package Int of

? This work was supported by the Fund NSFC61572279.
1 http://www.gecode.org/

1 // The implementation of the neutrality function N (x)
2 // The parameter vars can be a vector of Boolean variables or expressions
3 template<class VarVector> vector<BoolExpr>
4 neutrality(const VecVecType& attackerVec, const VarVector& vars) {
5 vector<BoolExpr> vec_bexpr;
6 BoolVar bv0(*this, 0, 0);
7 for (const VecType& attackers: attackerVec) {
8 BoolExpr sum_expr(bv0);
9 for (auto j: attackers) {

10 sum_expr = (sum_expr || vars[j]); // Disjunction of all attackers.
11 }
12 vec_bexpr.emplace_back(!sum_expr);
13 }
14 return vec_bexpr; // return a vector of Boolean expressions
15 }
16

17 // The programming model of CO semantics using x = N (x) ∗ N (N (x))
18 void encode_CO_bma() {
19 new_vars(m_daf.getNumberOfArguments()); // Create argNum variables
20

21 // Get attacker list of each argument
22 VecVecType attackerVec = m_daf.getAttackersVector();
23

24 vector<BoolExpr> bva1 = neutrality(attackerVec, X); // N (x)
25 vector<BoolExpr> bva2 = neutrality(attackerVec, bva1); // N (N (x))
26 for (auto i = m_daf.getNumberOfArguments(); i--;) {
27 rel(*this, X[i] == (bva1[i] && bva2[i])); // Post the constraints
28 }
29 }

Fig. 1. The Gecode programming model for the complete semantics based on BMA.

〈BoolExpr〉 ::= 〈x〉 Boolean variable
| !〈BoolExpr〉 negation
| 〈BoolExpr〉 && 〈BoolExpr〉 conjunction
| 〈BoolExpr〉 || 〈BoolExpr〉 disjunction
| 〈BoolExpr〉 == 〈BoolExpr〉 equivalence
| 〈BoolExpr〉 != 〈BoolExpr〉 non-equivalence
| 〈BoolExpr〉 >> 〈BoolExpr〉 implication
| 〈BoolExpr〉 << 〈BoolExpr〉 reverse implication
| 〈BoolExpr〉 ˆ 〈BoolExpr〉 exclusive or
| element(〈x〉, 〈IntExpr〉) array element of Boolean variables
| 〈IntRel〉 reified integer relation
| 〈SetRel〉 reified set relation
| 〈FloatRel〉 reified float relation

Figure 7.2: Boolean expressions

Like the post functions for integer and Boolean constraints presented in Section 4.4, post-
ing integer expressions and relations supports an optional argument of type IntPropLevel to
select the propagation level. For more information, see Posting of expressions and relations
and Section 4.3.

Using the expr() function, you can enforce a particular decomposition, and you can
specify the propagation level for each subexpression. For example,

rel(home, x+expr(home,y*z,IPL_DOM) == 0);

will perform domain propagation for the multiplication, but bounds propagation (the default)
for the sum.

An element expression such as element(x,e), where x is an array of integers or integer
variables, and e is an integer expression, corresponds to an array access x[e], implemented
using an element constraint (see Section 4.4.12).

MiniModel provides three integer expressions whose arguments are set expressions: the
minimum of a set, the maximum of a set, and a set’s cardinality. We will see later how set
expressions are constructed.

For examples of integer expressions, see Alpha puzzle, SEND+MORE=MONEY puzzle,
Grocery puzzle, Chapter 13, Chapter 16, and Section 3.1.

7.1.2 Boolean expressions and relations

Boolean expressions are constructed using standard C++ operators according to the structure
sketched in Figure 7.2.

Again, the purpose of a Boolean expression or relation is to post a corresponding con-
straint for it (see Posting of expressions and relations). Posting a Boolean expression returns
a new Boolean variable that is constrained to the value of the expression. Several constraints

106

Fig. 2. The syntax for constructing Boolean expressions in MiniModel

Gecode using the built-in function clause, called in function add OR Clause.2 It can
be seen from these two programming models that Gecode is convenient and suitable for
modeling argumentation problems. Using MiniModel and Int packages, we can easily
program the Boolean constraint models of other semantics.

H[CO1](xi) =
∧

xj∈R+(xi)

(oi ∨ ¬xj),
(
¬oi ∨

∨
xj∈R+(xi)

xj

)
,
(
¬xi ∨ ¬oi

)
,∧

xj∈R+(xi)

(¬xi ∨ oj),
(
xi ∨

∨
xj∈R+(xi)

¬oj

)
.

(1)

2 Absolutely, the package MiniMode also can handle CNF formulas, but in the current version
of argmat-mpg, we merely use the package Int to encode the CNF formulas. This approach
mainly refers from an example of Gecode, which implements a simple CNF SAT solver (see
http://www.gecode.org/doc/5.0.0/reference/sat_8cpp.html).

1 // The constraint model for the CNF encoding of [CO1] with 2n Boolean variables
2 void encode_CO_cnf_2() {
3 // Step 1: create 2 ∗ argNum SAT varibles
4 new_vars(2 * m_daf.getNumberOfArguments());
5

6 // Step 2: get attacker list of each argument
7 VecVecType attackerVec = m_daf.getAttackersVector();
8

9 // Step 3: Post CNF constraints
10 AMClause cls_binary; // add binary clauses
11 AMClause cls_admOpp, cls_rplusOpp;
12 for (auto i = m_daf.getNumberOfArguments(); i--;) {
13 cls_binary.clear().addNegLit(i, _O(i)); // post ¬xi ∨ ¬oi

14 add_OR_Clause(cls_binary);
15

16 cls_admOpp.clear().addPosLit(i); // add xi to cls admOpp
17 cls_rplusOpp.clear().addNegLit(_O(i)); // add ¬oi to cls rplusOpp
18 for (size_type j : attackerVec[i]) {
19 cls_binary.clear().addPosNegLit(_O(j), i); // post ¬xi ∨ oj

20 add_OR_Clause(cls_binary);
21

22 cls_binary.clear().addPosNegLit(_O(i), j); // post oi ∨ ¬xj

23 add_OR_Clause(cls_binary);
24

25 cls_admOpp.addNegLit(_O(j)); // add ¬oj to cls admOpp
26 cls_rplusOpp.addPosLit(j); // add xj to cls rplusOpp
27 }
28 add_OR_Clause(cls_admOpp); // post xi ∨ ¬oj1

∨ ¬oj2
· · ·

29 add_OR_Clause(cls_rplusOpp); // post ¬oi ∨ xj1 ∨ xj2 · · ·
30 }
31 }

Fig. 3. The Gecode programming model for the CO semantics using the CNF encoding of [CO1].

2 Branching
A branching in Gecode models defines the shape of the search tree. Gecode offers pre-
defined variable-value branching: when calling branch() to post a branching, the third
argument defines which variable is selected for branching, whereas the fourth argu-
ment defines which values are selected for branching. This technique is quite useful,
since it can optimize a search tree so as to reduce the search time. In current ver-
sion of argmat-mpg, we implement a novel variable selection strategy, which uses
the topological information of argumentation frameworks to specify the variable order.
argmat-mpg also allows to use the default and random variable order.

We also set up various value selection strategy for different semantics. For instance,
the value selections for the maximal semantics (e.g., PR and ID), as well as the maximal
range semantics (e.g., SST and STG), begin with Boolean value 1, since the extensions of
these semantics are required to be able to accommodate as many arguments as possible,
i.e., their corresponding Boolean vectors can contain as many 1s as possible. Similarly,
we can solve GR semantics starting from Boolean value 0.

3 Search solutions

When the programming models and the branching methods of the semantics are spec-
ified, the next is to search the solutions of these models. Gecode provides a family of
search engines with state-of-the-art performance to solve these models. Gecode also al-
lows to develop new search engines to achieve the actual computing tasks. For solving

stable and complete semantics, we use the built-in Depth-First Search (DFS) engine.
For solving the maximal and the maximal range semantics, we implement two new
search engines, respectively, both based on the built-in Branch-And-Bound (BAB) en-
gine, which can be used to find a maximal (w.r.t. ⊆) solution or range.

4 Supported options

argmat-mpg is implemented by C++ language, and supports all computational tasks
of ICCMA-2017. It is multi-threading and cross-platform (Windows and Unix OS).
Beside meeting the standard command interface of ICCMA-2017, argmat-mpg also
provides some useful options. The explanations of these options are shown in Table 1,
in which the options “-b” and “-e” allow to choose a branching strategy and a program-
ming model. In current version, argmat-mpg supports the CNF-based programming
models for all semantics, but merely supports the BMA-based programming models
for ST and CO semantics. Future version may consider to support the BMA-based pro-
gramming models for all semantics. The source codes submitted to ICCMA 2017 can
be found on the website of our project argumatrix3.

Table 1. The explanations for some useful options.

option value & explanation

-b

specify the variables selection strategy for branching (default: topo)
• none: using the default given variable selection strategy
• topo: using topological variable selection strategy
• rand: using random variable selection strategy (the random seed can be specified by “-r”)

-e

specify the encoding options for the problem (default: auto)
• cnf: using CNF encoding, supporting for all semantics
• auto: auto select encoding, supporting for all semantics
• st-cnf: using stable CNF encoding with n variables, supporting ST semantics
• st-ba: using stable BMA encoding with n variables, supporting ST semantics
• co-cnf2: using complete CNF encoding with 2n variables, supporting CO, PR, ID, and GR semantics
• co-ba: using complete BMA encoding with n variables, supporting CO, PR, ID, and GR semantics
• ad-cnf: using admissible CNF encoding with n variables, supporting PR and ID semantics
• ad-cnf2: using admissible CNF encoding with 2n variables, supporting PR and ID semantics
• sst-cnf2: using semistable CNF encoding with 2n variables, supporting SST semantics
• sst-cnf3: using semistable CNF encoding with 3n variables, supporting SST semantics
• stg-cnf2: using stage CNF encoding with 2n variables, supporting STG semantics

-o specify where to output {stdout, stderr, file} (default: stdout)
-thrd specify number of threads (default: 1)

-r specify the random seed, used for random variable selection (default: 0)
-s whether to show statistics, merely supports enumerating task {false, 0, true, 1} (default: false)

References
1. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic

reasoning, logic programming and n-person games. Journal of Artificial Intelligence 77(2)
(September 1995) 321–357

2. Fuan, P., Guiming, L., JIANG, Z.: Encoding argumentation semantics by boolean algebra.
IEICE Transactions on Information and Systems 100(4) (2017) 838–848

3 https://sites.google.com/site/argumatrix/

