
Benchmark selection at ICCMA’17

Sarah Alice GAGGL a, Thomas LINSBICHLER b, Marco MARATEA c and
Stefan WOLTRAN b

a Computational Logic Group, Technische Universität Dresden, Germany
b Institute of Information Systems, TU Wien, Austria

c DIBRIS, University of Genova, Italy

Abstract. This note introduces all steps performed to implement the benchmarks
selection phase at the Second International Competition on Computational Models
of Argumentation (ICCMA’17).

1. Competition design

The Second International Competition on Computational Models of Argumenta-
tion [Gaggl et al., 2016] evaluates the performance of submitted solvers on reasoning
tasks for abstract argumentation frameworks.

The semantics under consideration are complete (CO), preferred (PR), stable (ST),
semi-stable (SST), stage (STG), grounded (GR), and ideal (ID). The computational
problems employed are deciding credulous acceptance of an argument (DC), deciding
skeptical acceptance of an argument (DS), enumerating all extensions (EE), and enu-
merating a single extension (SE). A computational problem for a semantics constitutes a
task.

For each semantics, all corresponding tasks consolidate to a track. For grounded and
ideal semantics, only DC and SE are employed. A special track, Dung’s Triathlon (D3)
combines the enumeration of grounded, stable, and preferred extension to a single task.

Tasks are grouped according to difficulty of the respective tasks. The classification
into groups A to E is based on known complexity results and corroborated by the analysis
of the percentage of solved instances in the 2015 edition. The applied grouping is the
following:

A: DS-PR, EE-PR, EE-CO
B: DC-ST, DS-ST, EE-ST, SE-ST, DC-PR, SE-PR, DC-CO
C: DS-CO, SE-CO, DC-GR, SE-GR
D: DC-ID, SE-ID
E: SST-*, STG-*

Note that groups D and E include the newly employed semantics. Each group A to
C gets its own set of benchmarks, while for groups D and E the same set of benchmarks
as for group A is used.

2. Benchmarks selection process

The goal of this phase is to select the instances that are indeed run in the competition.
First, the domains are identified based on the benchmark submissions. Then, a set of
instances is collected (or generated) for each domain. These instances are subsequently
classified into hardness categories according to the performance of a set of solvers from
the previous competition. Finally, the instances to be run at the competition are selected
based on this classification, following a predefined distribution over hardness categories.

As each group of tasks has its own set of benchmarks, the classification and selection
has to be done for each group. However, since there are no reference solvers for the tasks
of groups D and E, these tasks use the same benchmark set as group A.

The following subsections present 1) how instances have been collected, 2) how
instances have been classified, and 3) how instances have been selected, respectively.

2.1. Benchmark collection

Following the dedicated call for benchmarks, the competition received 6 submissions:

“ABA2AF”. Assumption-Based Argumentation Translated to Argumentation Frame-
works.

AdmBuster. A benchmark example for (strong) admissibility.

AFBenchGen2. A Generator for Random Argumentation Frameworks:

• Barabasi-Albert
• Erdös-Rényi
• Watts-Strogatz

“Planning2AF”. Exploiting Planning Problems for Generating Challenging Abstract
Argumentation Frameworks.

SemBuster. A benchmark example for semi-stable semantics.

Traffic. Traffic Networks Become Argumentation Frameworks.

Short descriptions of these benchmarks can be found at http://www.dbai.

tuwien.ac.at/iccma17/submissions.html#benchmarks.

The generator AFBenchGen2 provides AFs of 3 different graph classes (Barabasi-
Albert, Erdös-Rényi, and Watts-Strogatz), each giving rise to a domain of its own. All
other submissions make up exactly one domain. Moreover, the generators from IC-
CMA’15, namely GroundedGenerator, SccGenerator, and StableGenerator, are reused.
Detailed descriptions of these generators can be found in [Thimm and Villata, 2017]. To
summarize, the following domains are considered:

• ABA2AF
• AdmBuster
• Barabasi-Albert
• Erdös-Rényi
• GroundedGenerator

Table 1. Description of (generated) benchmarks considered for selection.

Domain No. instances Parameters

ABA2AF 426 all submitted instances

AdmBuster 13 no. arguments: 1K, 2K, 4K, 6K, 8K, 10K, 20K, 50K, 100K,
200K, 500K, 1000K, 2000K

Barabasi-Albert 500 5 random instances for each (no. arguments, probCycles) in
{20,40, . . . ,200}×{0,0.1, . . . ,0.9}

Erdös-Rényi 500 10 random instances for each (no. arguments, probAttacks) in
{100,200, . . . ,500}×{0.1,0.2, . . . ,1.0}

GroundedGenerator 50 no. arguments random[100,1500]; 10 random instances for each
probAttacks in {0.01,0.02, . . . ,0.05}

Planning2AF 385 all submitted instances

SccGenerator 600 no. arguments random[100,1500]; no. SCCs random[1,50]; 25
random instances for each (innerAttackProb,
outerAttackProb) in
{0.3,0.4, . . . ,0.7}×{0.05,0.1,0.15,0.2}.
no. arguments random[5000,10000]; no. SCCs random[40,50];
5 random instances for each (innerAttackProb,
outerAttackProb) in
{0.3,0.4, . . . ,0.7}×{0.05,0.1,0.15,0.2}.

SemBuster 16 no. arguments: 60, 150, 300, 600, 900, 1200, 1500, 1800, 2400,
3000, 3600, 4200, 4800, 5400, 6000, 7500

StableGenerator 500 no. arguments random[100,800]; 500 random instances with
parameters minNumExtensions= 5,
maxNumExtensions= 30, minSizeOfExtensions= 5,
maxSizeOfExtensions= 40,
minSizeOfGroundedExtension= 5,
maxSizeOfGroundedExtension= 40

Traffic 600 all submitted instances

Watts-Strogatz 400 (no. arguments, k, baseDegree, probCycles) in
{100,200, . . . ,500}× log2(no. arguments) · {1,2,3,4}×
{0.1,0.3, . . . ,0.9}×{0.1,0.3,0.5,0.7}

• Planning2AF
• SccGenerator
• SemBuster
• StableGenerator
• Traffic
• Watts-Strogatz

Given these domains, we collect and generate a total of 3990 instances. Table 1
gives details on the collected benchmarks, stating, for each domain, the number of in-
stances as well as the parameters for generating the instances. If the benchmark submis-
sion consisted of a set of instances, we simply consider them all. For domains emerging
from submissions of benchmark generators, we try to produce instances randomly with
the aim of covering a possibly broad range of difficulty. The exact parameters used for
generating the instances can be read off Table 1. In some cases, parameters are chosen
randomly from an interval (denoted by random[a,b]), in other cases all values among a
set of values are considered (denoted by {v1,v2, . . . ,vn}).

2.2. Benchmark classification

In the next step the collected instances are classified with respect to their expected level
of difficulty.

To classify the hardness of instances, competitions in other research fields such as
SAT, ASP and Planning, employ best solvers from the most recent competition in the
series. We follow this idea by also doing a classification of benchmarks based on the
performance of solvers from ICCMA’15. However, in ICCMA the situation shows two
significant differences. On the one hand, the number of tasks and tracks employed in
ICCMA (strongly) exceeds the number of tasks and tracks in other competitions. On
the other hand, ICCMA’17 features new semantics (and, consequently, new tasks and
tracks), so no reference results are at disposal.

Due to the second point, the option of selecting the best solvers from the previous
edition for each task is not feasible. But, even considering only tasks which are being
conducted for the second time, this option would lead to a very high number of solvers to
run for the classification. Instead, we identify “representative” tasks for each task group
A, B, and C which have also been conducted in ICCMA’15. Moreover, as mentioned
earlier, we abstain from classifying instances for tasks in groups D and E, but merge
these tasks with the ones from group A to use the same set of benchmarks. We identify
the following representative tasks which will be used for classification:

• A: EE-PR
• B: EE-ST
• C: SE-GR

All task groups contain enumeration as well as decision tasks. We select enumeration
tasks as representative, as the performance of solvers on decision tasks highly depends
on the argument for which acceptance is to be decided. Therefore, enumeration tasks can
give a better estimate of the difficulty of instances.

(Best) Solver selection. For each representative task we aim to select “representative”
solvers from ICCMA’15, to get a proper classification of the instances’ hardness. Solvers
to run for each group are thus selected by (i) considering best performing solvers from
2015 for the tasks, and (ii) ensuring that the selected solvers are based on different
solving approaches. The following solvers from ICCMA’15 are selected (see http:

//argumentationcompetition.org/2015/solvers.html for system descriptions):

• A: Cegartix, CoQuiAAS, Aspartix-V
• B: Aspartix-D, ArgSemSAT, ConArg
• C: CoQuiAAS, LabSATSolver, ArgSemSAT

Both Cegartix and ArgSemSAT implement (iterative) SAT based approaches; Co-
QuiAAS makes use of Partial Max-SAT; Aspartix-V and Aspartix-D employ a translation
to ASP; ConArg is based on Constrain Programming; and LabSATSolver implements a
direct approach (for SE-GR). All of the solvers have been among the top 5 solvers of the
respective tasks in ICCMA’15. Hence, the selection is in line with (i) and (ii).

Hardness categories. The obtained performance results are then taken to classify in-
stances into hardness categories by picking the upmost category such that the following
conditions apply:

Table 2. Classification results for task group A.

A: EE-PR total very easy easy medium hard too hard not classified

ABA2AF 426 381 19 16 10 0 0
AdmBuster 13 4 3 2 4 0 0
Barabasi-Albert 500 267 25 20 42 145 1
Erdös-Rényi 500 180 109 43 46 122 0
Watts-Strogatz 400 264 28 10 12 86 0
GroundedGenerator 50 9 8 6 27 0 0
Planning2AF 385 95 35 34 187 33 1
SccGenerator 600 398 78 44 79 0 1
SemBuster 16 2 1 3 9 1 0
StableGenerator 500 260 34 24 182 0 0
Traffic 600 164 11 11 284 127 3

Total 3990 2024 351 213 882 514 6

1. [very easy] Instances completed by all systems in less than 6 seconds solving
time.

2. [easy] Instances completed by all systems in less than 60 seconds solving time.
3. [medium] Instances completed by all systems in less than 10 minutes solving

time.
4. [hard] Instances completed by at least one system in 20 minutes (twice the time-

out) solving time.
5. [too hard] Instances such that none of the systems finished solving in 20 minutes.

The results of the classification are exemplified for task group A in Table 2. It can
be seen that almost every combination of domain and difficulty category is inhabited
by some instances. Only for the “too hard” category we are not able to obtain instances
for every domain (even for no domain for task group C). If running the representative
solvers does not deliver meaningful results for an instance, the instance is not classified
and therefore not considered for selection.

2.3. Benchmark selection

The final benchmark set is made up of 350 instances, distributed over the difficulty cate-
gories as follows:

• 50 very easy,
• 50 easy,
• 100 medium,
• 100 hard,
• 50 too hard.

Due to the lack of “very hard” instances for group C, we increase the number of
“hard” instances to 150 there.

Not only we do aim for an even distribution of benchmarks over levels of difficulty,
but also among domains. Now in order to select n instances for a certain task group and a
certain class of difficulty, we apply the following procedure: for each domain d, we have
given the set Id of instances and want to select a subset Sd of these instances. Now for
each domain such that Id is non-empty, we select one element of Id at random, i.e. remove

Table 3. Number of selected instances for each task group, difficulty class, and domain.

Task group A B C
Hardness class 1 2 3 4 5 T 1 2 3 4 5 T 1 2 3 4 5 T

ABA2AF 5 5 12 10 0 32 5 5 1 0 0 11 5 6 1 0 0 12
AdmBuster 4 3 2 4 0 13 4 1 1 2 0 8 4 1 1 6 0 12
Barabasi-Albert 5 5 11 10 10 41 5 5 5 14 8 37 5 0 0 0 0 5
Erdös-Rényi 5 5 11 10 9 40 5 5 19 13 7 49 5 6 11 21 0 43
Watts-Strogatz 5 5 10 10 10 40 5 5 20 14 8 52 5 6 21 36 0 68
GroundedGenerator 4 5 6 9 0 24 4 4 5 1 0 14 5 6 1 4 0 16
Planning2AF 5 6 12 10 10 43 5 5 5 14 8 37 5 6 3 0 0 14
SccGenerator 5 5 11 9 0 30 4 5 19 14 3 45 4 6 21 0 0 31
SemBuster 2 1 3 9 1 16 4 5 4 0 0 13 3 1 0 12 0 16
StableGenerator 5 5 11 9 0 30 4 5 19 14 8 50 4 6 20 35 0 65
Traffic 5 5 11 10 10 41 5 5 2 14 8 34 5 6 21 36 0 68

Total 50 50 100 100 50 350 50 50 100 100 50 350 50 50 100 150 0 350

it from Id and add it to Sd . We repeat this process until we have selected n instances, i.e.
the sum over all |Sd | is n. In the last iteration, when the number domains where Id is non-
empty is higher than the number of instances that remains to be selected, the domains to
be chosen from are determined randomly. For example, if we have 1 instance for domain
α , 2 for β , 4 for γ , and 11 for δ ; and want to select 10 instances, we take 1 from α , 2
from β , 3 from γ , 3 from δ , and 1 randomly either from γ or δ .

The numbers of selected instances for every domain, task group, and difficulty cat-
egory can be read off in Table 3.

The instances for Dung’s triathlon are selected based on the classification for task
group A, but by a separate process. That means that the numbers of instances per domain
coincide with group A, but instances are not necessarily the same.

Due to the joint evaluation of all tasks for a semantics, making up a track, the number
of benchmarks has to be constant among the tasks. Therefore for the acceptance tasks,
we cannot select multiple arguments for every instance. Instead, we select only one ar-
gument for each instance, with the exception that we drop the “very easy” instances for
acceptance tasks and select two arguments to be queried for the “very hard” instances.

For each task group except group D (see Section 2.4), the query arguments are se-
lected at random, maintaining a minimum number of yes- and no-instances, respectively.
For group A and E, the same arguments are used.

2.4. Further issues

No stable extensions. Semi-stable and stage extensions coincide with stable extensions
if at least one of the latter exists. Therefore, in order force solvers to deal with the “full
hardness” of semi-stable and stage semantics, we want to make sure that the selection
for these semantics contain a considerable amount of benchmarks possessing no stable
extensions. To this end, we check the selected instances on existence of stable extensions;
the numbers are shown in Table 4. We consider the number of instances without stable
extensions to be satisfactory.

Argument selection for ideal semantics. While the selection of arguments for the de-
cision tasks DC and DS in all task groups except D was done randomly, for ideal se-

Table 4. Share of instances without stable extensions.

hardness category ST(F) 6= /0 ST(F) = /0 unknown share

very easy 34 16 0 32%
easy 34 16 0 32%
medium 60 40 0 40%
hard 56 33 11 > 33%
too hard 30 9 11 > 18%
total 214 114 22 > 34%

mantics we are aiming for a more sophisticated selection in order to select the “inter-
esting” arguments for the acceptance task. That selection is based on the insights that
every argument contained in the grounded extension is accepted under ideal semantics,
and every argument not contained in every preferred extension is rejected under ideal
semantics. Hence, we aim for a considerable number of instances for which we select an
argument contained in all preferred extensions, but not in the grounded extension. We do
so by considering the following strategy: Given an AF F = (A,R), let α and β be random
variables taking values between 0 and 1.

• if
⋃

PR(F) \ GR(F) 6= /0 and α < 0.9, select an argument randomly from⋃
PR(F)\GR(F);

• otherwise, if GR(F) 6= /0 and β < 0.6, select an argument randomly from GR(F);
• otherwise, select an argument randomly from A\

⋃
PR(F).

We apply this strategy to the selection of query arguments for instances in hardness cat-
egory easy and medium, and obtained the following distributions for the selected argu-
ments a:

a ∈GR(F) a ∈
⋃

PR(F)\GR(F) a ∈ A\
⋃

PR(F)
easy 14 15 21
medium 21 21 58

We randomly select the arguments for the hard and too hard instances.

References

Sarah A. Gaggl, Thomas Linsbichler, Marco Maratea, and Stefan Woltran. Introducing
the second international competition on computational models of argumentation. In
Matthias Thimm, Federico Cerutti, Hannes Strass, and Mauro Vallati, editors, Pro-
ceedings of the 1st International Workshop on Systems and Algorithms for Formal Ar-
gumentation (SAFA 2016), pages 4–9, 2016. URL https://www.dbai.tuwien.ac.

at/iccma17/Introducing_ICCMA17.pdf.
Matthias Thimm and Serena Villata. The first international competition on computational

models of argumentation: Results and analysis. Artificial Intelligence, 252:267–294,
2017.

