
The pyglaf argumentation reasoner

Mario Alviano

Department of Mathematics and Computer Science, University of Calabria, Italy
alviano@mat.unical.it

Abstract. The pyglaf reasoner takes advantage of circumscription to
solve computational problems of abstract argumentation frameworks. In
fact, many of these problems are reduced to circumscription by means of
linear encodings, and a few others are solved by means of a sequence of
calls to an oracle for circumscription. Within pyglaf, Python is used to
build the encodings and to control the execution of the external circum-
scription solver, which extends the SAT solver glucose and implements
an algorithm based on unsatisfiable core analysis.

1 Introduction

Circumscription [4] is a nonmonotonic logic formalizing common sense reason-
ing by means of a second order semantics, which essentially enforces to minimize
the extension of some predicates. With a little abuse on the definition of cir-
cumscription, the minimization can be imposed on a set of literals, so that a
set of negative literals can be used to encode a maximization objective func-
tion. Since many semantics of abstract argumentation frameworks are based on
a preference relation that essentially amount to inclusion relationships, pyglaf
(http://alviano.com/software/pyglaf/) uses circumscription as a target lan-
guage to solve computational problems of abstract argumentation frameworks.

pyglaf is implemented in Python and uses circumscriptino (http://
alviano.com/software/circumscriptino/), a circumscription solver extend-
ing the SAT solver glucose [1]. Linear reductions are used for all semantics. For
the ideal extension, the reduction requires the union of all admissible extensions
of the input graph; such a set is computed by means of iterative calls to cir-
cumscriptino. The communication between pyglaf and circumscriptino is
handled in the simplest possible way, that is, via stream processing. This de-
sign choice is principally motivated by the fact that the communication is often
minimal, limited to a single invocation of the circumscription solver.

2 Circumscription

LetA be a fixed, countable set of atoms including ⊥. A literal is an atom possibly
preceded by the connective ¬. For a literal `, let ` denote its complementary
literal, that is, p = ¬p and ¬p = p for all p ∈ A; for a set L of literals, let
L be {` | ` ∈ L}. Formulas are defined as usual by combining atoms and the



connectives ¬, ∧, ∨, →, ↔. A theory is a set T of formulas including ¬⊥; the
set of atoms occurring in T is denoted by atoms(T ). An assignment is a set A of
literals such that A ∩ A = ∅. An interpretation for a theory T is an assignment
I such that (I ∪ I)∩A = atoms(T ). Relation |= is defined as usual. I is a model
of a theory T if I |= T . Let models(T ) denote the set of models of T .

Circumscription applies to a theory T and a set P of literals subject to
minimization. Formally, relation ≤P is defined as follows: for I, J interpretations
of T , I ≤P J if I ∩ P ⊆ J ∩ P . I ∈ models(T ) is a preferred model of T with
respect to ≤P if there is no J ∈ models(T ) such that I 6≤P J and J ≤P I. Let
CIRC (T, P ) denote the set of preferred models of T with respect to ≤P .

3 From Argumentation Frameworks to Circumscription

An abstract argumentation framework (AF) is a directed graph G whose nodes
arg(G) are arguments, and whose arcs att(G) represent an attack relation. An
extension E is a set of arguments. The range of E in G is E+

G := E ∪ {x |
∃yx ∈ att(G) with y ∈ E}. In the following, the semantics of ICCMA’17 are
characterized by means of circumscription.

For each argument x, an atom ax is possibly introduced to represent that x
is attacked by some argument that belongs to the computed extension E, and
an atom rx is possibly introduced to enforce that x belongs to the range E+

G :

attacked(G) :=

ax ↔
∨

yx∈att(G)

y

∣∣∣∣∣∣ x ∈ arg(G)

 (1)

range(G) :=

rx → x ∨
∨

yx∈att(G)

y

∣∣∣∣∣∣ x ∈ arg(G)

 (2)

The following set of formulas characterize semantics not based on preferences:

conflict-free(G) := {¬⊥} ∪ {¬x ∨ ¬y | xy ∈ att(G)} (3)

admissible(G) := conflict-free(G)∪attacked(G) ∪ {x→ ay | yx ∈ att(G)} (4)

complete(G) := admissible(G) ∪


 ∧

yx∈att(G)

ay

→ x

∣∣∣∣∣∣ x ∈ arg(G)

 (5)

stable(G) := complete(G) ∪ range(G) ∪ {rx | x ∈ arg(G)} (6)

Note that in (4) truth of an argument x implies that all arguments attacking
x are actually attacked by some true argument. In (5), instead, whenever all
attackers of an argument x are attacked by some true argument, argument x is
forced to be true. Finally, in (6) all atoms of the form rx are forced to be true,
so that the range of the computed extension has to cover all arguments.

The ideal semantic is defined as follows (Proposition 3.6 by [2]): Let X be the
set of admissible extensions of G that are not attacked by any admissible exten-
sions, that is, X := {E ∈ models(admissible(G)) | @E′ ∈ models(admissible(G))



Algorithm 1: Compute the union of all admissible extensions of an AF G

1 T := admissible(G); U := ∅;
2 repeat

3 Compute I ∈ CIRC (T, arg(G) \ U); // prefer arguments not in U
4 U ′ := U ; U := U ∪ (I ∩ arg(G)); // possibly extend the union

5 until U = U ′; // terminate when no argument is added to U

such that yx ∈ att(G), x ∈ E, y ∈ E′}. E is the ideal extension of G if E ∈ X,
and there is no E′ ∈ X such that E′ ⊇ E.

All semantics of ICCMA’17 are characterized in circumscription as follows:

co(G) := CIRC (complete(G), ∅) (7)

st(G) := CIRC (stable(G), ∅) (8)

gr(G) := CIRC (complete(G), arg(G)) (9)

pr(G) := CIRC (complete(G), arg(G)) (10)

sst(G) := CIRC (complete(G) ∪ range(G), {¬rx | x ∈ arg(G)}) (11)

stg(G) := CIRC (conflict-free(G) ∪ range(G), {¬rx | x ∈ arg(G)}) (12)

id(G,U) := CIRC (admissible(G) ∪ arg(G) \ Y , Y ) (13)

where in (13) U is the union of all admissible extensions of G, and Y is U \ {x |
∃yx ∈ att(G), y ∈ U}.

4 Implementation

Abstract argumentation frameworks can be encoded in trivial graph format
(tgf) as well as in aspartix format (apx). The following data structures are
populated during the parsing of the input graph G: a list arg of the arguments
in arg(G); a dictionary argToIdx, mapping each argument x to its position in
arg; a dictionary att, mapping each argument x to the set {y | xy ∈ att(G)}; a
dictionary attR, mapping each argument x to the set {y | yx ∈ att(G)}. Within
these data structures, theories (7)–(13) are constructed in amortized linear time.

Ideal Extension. The union U of all admissible extensions is computed by Al-
gorithm 1. Initially, U is empty, and circumscriptino is iteratively asked to
compute an admissible extension that maximize the accepted arguments not
already in U , so to expand U as much as possible at each iteration.

Credulous and Skeptical Acceptance. For complete, stable, and preferred exten-
sions, credulous acceptance is addressed by checking consistency of the theory
extended with the query argument. Similarly, skeptical acceptance is addressed
by adding the complement of the query argument for complete, and stable ex-
tensions. Grounded and ideal extensions are unique, and therefore credulous



Algorithm 2: Compute grounded, stable and preferred extensions of G

1 Compute Igr ∈ co(G); stable := ∅; preferred := ∅;

2 T := complete(G) ∪ {x ∈ arg(G) | x ∈ Igr}; P := arg(G);
3 for I ∈ CIRC (T, P ) do // enumerate preferred extensions

4 preferred := preferred ∪ {I}; // found new preferred extension

5 if for all x ∈ arg(G) \ I there is yx ∈ att(G) such that y ∈ I then
6 stable := stable ∪ {I}; // the preferred extension is also stable

7 return (Igr, stable, preferred);

acceptance is addressed by checking the presence of the query argument in the
computed extension. Actually, for the ideal extension, a negative answer is pos-
sibly produced already if the query argument is not part of the union of all ad-
missible extensions. The remaining acceptance problems are addressed naively
by extension enumeration; we plan to extend circumscriptino with query an-
swering, so to improve the implementation of these acceptance problems.

Dung’s Triathlon. The triathlon is addressed by Algorithm 2 based on the fol-
lowing observations: the grounded extension is contained in every preferred ex-
tension (Theorem 25 by [3]), and every stable extension is a preferred extension
(Lemma 15 by [3]). Accordingly, the algorithm starts by computing the unique
grounded extension Igr of the input graph. After that, a theory whose models
are complete extensions is built, and simplified by enforcing truth of all argu-
ments in Igr. The objective literals are the negation of all arguments, so that
preferred extensions will be computed by circumscriptino. Every preferred ex-
tension returned by circumscriptino is finally checked for stability by means
of a linear time Python function.

References

1. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Boutilier, C. (ed.) IJCAI 2009, Proceedings of the 21st International Joint Con-
ference on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009. pp.
399–404 (2009), http://ijcai.org/Proceedings/09/Papers/074.pdf

2. Caminada, M.: A labelling approach for ideal and stage semantics. Argument
& Computation 2(1), 1–21 (2011), http://dx.doi.org/10.1080/19462166.2010.
515036

3. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995), http://dx.doi.org/10.1016/0004-3702(94)00041-X

4. McCarthy, J.: Circumscription - A form of non-monotonic reasoning. Artif. Intell.
13(1-2), 27–39 (1980), http://dx.doi.org/10.1016/0004-3702(80)90011-9


