How to build and test a Docker container for your
ICCMA19 solver

Install and run Docker

This document is a step-to-step guide for packaging your solver to be submitted to International
Competition on Computational Models of Argumentation (ICCMA 2019) into a Docker container.

First, create a Docker Cloud account here: https://cloud.docker.com
In the following of this manual we consider as DOCKER_ID the name iccmal9.

Then, sign in and
1. Click on “Create Repository”.

2. Choose a name for the Docker repository of your solver (e.g., “YOUR_SOLVER_REPOSITORY")
and a description for your repository, select “public”, and then click on “Create”. In the
following, we suppose the chosen solver name is conarg. See Figure 1.

Create Repository

iccmal9) conarg

Visibility
Using 0 of 1 private repositories. Get more

Public ® Private &
Public repositories appear in Docker Only you can see private repositories
Hub search results

Build Settings (optional)

Autobuild triggers a new build with every git push to your source code repository Learn more

C)
A\ 4

Disconnected Disconnected

Figure 1: create the repository for your solver.

Your repositories can also be accessed by signing in on Docker Hub: https://hub.docker.com/ (same
login name and password). See Figure 2.

.
'===' Q_ Search Dashboard Explore Organizations Create .iccma19

& Repositories * Stars (¢ Contributed Private Repositories: Using 0 of 1 Get more

iccmal9/conarg 0 0 >
public STARS PULLS | DETALS

Figure 2: container view from https://hub.docker.com.

Then, install Docker on your machine. Please refer to the official installation Web page:
https://docs.docker.com/install/. For instance:

Linux: https://docs.docker.com/install/linux/docker-ce/ubuntu/#install-docker-ce

or https://linuxize.com/post/how-to-install-and-use-docker-on-ubuntu-18-04/ (for Ubuntu 18.4)
Windows: https://docs.docker.com/docker-for-windows/install/

Mac: https://docs.docker.com/docker-for-mac/install/

Once accomplished, open a terminal window on your machine and be sure the Docker demon is
running. For example, run the hello-world container (not that the all the following docker commands
may need to be run with sudo before them):

docker run hello-world
Then from terminal login to your Docker account by typing:

docker login --username=DOCKER_ID

Where DOCKER_ID is the name of your Docker account (iccmal9 in this running example). You will
be also required to type your Docker password. The following screenshot shows this command in
the terminal.

[NON | conarg_dir — -bash — 80x5

MacBook-Francesco:conarg_dir francescosantini$ docker login --username=iccmal9
Password:
Login Succeeded

MacBook-Francesco:conarg_dir francescosantini$ I

Solver Dockerization

In this section we describe how to create a Docker container with your solver. First, create a
directory “SOLVER_DIR”, somewhere on your machine. This directory needs to contain at least:

w

All the files needed by your solver; we use “YOUR_SOLVER” as the name of the solver main
executable.

The runsolver tool used to monitor the execution of your solver (see
http://www.pragmaticsofsat.org/2011/presentations/slides-or.pdf).

A “wrapper.sh” shell script, which will use runsolver and call the script at bullet 4.

A “generic-interface-2019.sh” shell script, which needs to be adapted in order to implement
the required input/output interface (for more details please check the document at
http://iccmal9.dmi.unipg.it/res/SolverRequirements.pdf).

If your solver natively implements such an interface, the script at bullet 3 has to directly call
your solver and not this script.

A file named “Dockerfile” (requiring Alpine Linux for running the solver, and defining
wrapper.sh, bullet 3, as the entry-point of execution).

When you build an image by using this Dockerfile, the assembled package will contain a minimal
distribution of Linux (Alpine Linux: https://alpinelinux.org), and all the files at bullets 1-5. If the
solver is composed by several executables/files, add all of them to this directory. Please try to use
Alpine Linux: if you use a different Linux distribution, e.g., Ubuntu, the final image size will
considerably increase (from ~10 to ~80 GB). The following screenshot shows the minimal content
of the “SOLVER_DIR” directory (conarg_dir in this example). As running example, we will build a
container for conarg, which represents an instantiation of the “YOUR_SOLVER” string in this guide.

[NON) conarg_dir — -bash — 80x6

MacBook-Francesco:conarg_dir francescosantini$ 1s
Dockerfile generic-interface-2019.sh
conarg runsolver

dynamic-tracks-script.sh wrapper.sh
MacBook-Francesco:conarg_dir francescosantini$

Then, be sure to be inside “SOLVER_DIR”, and type

docker build -t DOCKER_ID/YOUR_SOLVER_REPOSITORY .

where YOUR_SOLVER_REPOSITORY is the name of the repository you have created in this previous
section, and “.” (or alternatively “./”) is the current folder that contains all the files.

In this example, DOCKER_ID/YOUR_SOLVER_REPOSITORY will then correspond to iccmal9/conarg.
This command builds a Docker image containing everything is inside the current directory. The
following screenshot shows what happens when this command is executed to build an image of the
ConArg solver.

@® ® conarg_dir — -bash — 80x23

MacBook-Francesco:conarg_dir francescosantini$ docker build -t iccmal9/conarg
Sending build context to Docker daemon 10.04MB
Step 1/4 : FROM alpine
latest: Pulling from library/alpine
4fe2aded980c: Already exists
Digest: sha256:621c2f39f8133acb8e64023a94dbdf0d5ca81896102b9%e57c0dcl84cadaf5528
Status: Downloaded newer image for alpine:latest
---> 196d1l2cf6abl
Step 2/4 : WORKDIR /app
---> Running in b7cebd4eb214c
Removing intermediate container b7cebdeb214c
---> c53c41dledfd
Step 3/4 : COPY
---> b0a63b9594e9
Step 4/4 : ENTRYPOINT ["./wrapper.sh"]
---> Running in 59f5696ad83e
Removing intermediate container 59f5696ad83e
---> el68b0Ob7776a
Successfully built el168b0Ob7776a
Successfully tagged iccmal9/conarg:latest
MacBook-Francesco:conarg_dir francescosantini$

Afterwards, check if the image "DOCKERID/YOUR_SOLVER_REPOSITORY" has been successfully
created (the result for this running example is shown in the following screenshot.

docker images
[NON | conarg_dir — -bash — 87x6

MacBook-Francesco:conarg_dir francescosantini$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
iccmal9/conarg latest e168b0Ob7776a About a minute ago 14.4MB

alpine latest 196d12cf6abl 3 weeks ago 4.41MB
MacBook-Francesco:conarg_dir francescosantini$ I

In order to test if your dockerized solver works fine, you first need a second container storing some
test-frameworks from ICCMA 2017. The container iccmal9/test frameworks stores two
frameworks: admbuster_1000.apx and admbuster_1000.tgf.

Please type the following commands one after the other (respectively retrieving from a repository
and then running this second container):

docker pull iccmal9/test_frameworks
docker run -d --name test_frameworks iccmal9/test_frameworks

These commands pull a new container and run it in background (-d option), with name
test_frameworks.

Now it is possible to launch your dockerized solver on one of the framework instances in
test_frameworks; use, for instance, the command

docker run --volumes-from test_frameworks DOCKER_ID/YOUR_SOLVER_REPOSITORY 600 -f
/test_frameworks/admbuster_1000.apx -fo apx -p DC-PR -a c408

to check the credulous acceptance of argument c408 with the preferred semantics on file
admbuster_1000.apx. The first parameter after DOCKER_ID/YOUR_SOLVER_REPOSITORY has
always to be the timeout in seconds (600 seconds in this example). The result is shown in the
following screenshot.

| NON) %) francescosantini — -bash — 91x8

MacBook-Francesco:~ francescosantini$ docker run --volumes-from test_frameworks iccmal9/con
arg 600 -f /test_frameworks/admbuster_1000.apx -fo apx -p DC-PR -a c408

YES

real Om 0.04s

user Om 0.01s

sys Om 0.00s
MacBook-Francesco:~ francescosantini$ l

After the timeout in seconds, your solver can be executed by using a superset of the options used
in ICCMA 2017 (adding —m is the only change):

o -ffileinput (the file storing the framework)

e -m fileinput (the file storing the modification on the file passed with —f, used in the dynamic
track only)

e -fo format (apx or tgf)

e -p problem (EE-PR, DS-PR, etc.)

e -aadditional (e.g., argument to be checked for credulous/skeptical acceptance)

Please refer to http://iccmal9.dmi.unipg.it/SolverRequirements.pdf for detailed information on
comments. The iccmal9/test_frameworks image also contains two modification files
(admbuster_1000.apxm and admbuster_1000.tgfm), in order to test also dynamic solvers.

Finally, you can push the image to your personal repository:

docker push DOCKER_ID/YOUR_SOLVER_REPOSITORY

The result is in the following screenshot:

[NON | conarg_dir — -bash — 77x9

MacBook-Francesco:conarg_dir francescosantini$ docker push iccmal9/conarg
The push refers to repository [docker.io/iccmal9/conarg]

f24907e36¢c77: Layer already exists

f59c77452af3: Layer already exists

df64d3292fd6: Layer already exists

latest: digest: sha256:3eedb09af870ddfd615a52f3219d913edf08699bd6ébe5da857881e
fb4bde330c size: 945

MacBook-Francesco:conarg_dir francescosantini$ I

The repository has been now updated also on Docker Hub https://hub.docker.com/, as Figure 3
shows.

'===' Q Search Dashboard Explore Organizations Create .iccma19

& Repositories * Stars (£ Contributed Private Repositories: Using0 of 1 Get more

iccmat9/conarg 0 2 >
public STARS PULLS DETALLS

Figure 3: a new pull for this repository.

To pull it again from your repository, first login (e.g., docker login --username=iccma19), and then
use the command

docker pull DOCKER_ID/YOUR_SOLVER_REPOSITORY

[NON) conarg_dir — -bash — 79x8

MacBook-Francesco:conarg_dir francescosantini$ docker pull iccmal9/conarg

Using default tag: latest

latest: Pulling from iccmal9/conarg

Digest: sha256:3eedb09af870ddfd615a52f3219d913edf08699bd6be5da857881lefb4dbde330c¢c

Status: Image is up to date for iccmal9/conarg:latest
MacBook-Francesco:conarg_dir francescosantini$

A link to a public repository, as iccmal9/conarg in this example, is what the
participants need to clearly state in their solver description (submitted through
EasyChair), and represents mandatory information for a solver submission.

All the files used in this guide to dockerize conarg (i.e., conarg_dir) can be found at the following
link:
e http://iccmal9.dmi.unipg.it/add/conarg dir.zip

The sample files used to create test_frameworks can be found at:
e http://iccmal9.dmi.unipg.it/add/code/test frameworks.zip

Further commands

We now report a couple of useful additional commands you might use to assemble your container.
In case of any problem, please refer to the official documentation:

https://docs.docker.com/engine/reference/commandline/docker/#child-commands

The first one can be used to locally remove a Docker image (fbff44780fae is the image ID you can
obtain with the docker images command, -f is a force flag):

docker rmi -f fbff44780fae
In order to list all the containers running on your machine, type:
docker ps

Or docker ps —a to get all the containers (also stopped ones). To remove one of such containers, the
command is (3355386d91cb is the container ID you can obtain with the docker ps command):

docker rm 3355386d91cb

Finally, to stop the execution of the container with ID 3355386d91chb:

docker stop 3355386d91ch

