A-FoL10 DPDB — SYSTEM DESCRIPTION FOR ICCMA 2021

Johannes K. Fichte Markus Hecher
International Center for Computational Logic Institute of Logic and Computation
TU Dresden TU Wien
01062 Dresden, Germany Favoritenstra3e 9-11, 1040 Wien, Austria
johannes.fichte@tu-dresden.de hecher@dbai.tuwien.ac.at
Piotr Gorczyca Ridhwan Dewoprabowo
TU Dresden TU Dresden
01062 Dresden, Germany 01062 Dresden, Germany
gorczycapj@gmail.com ridhwan.dewoprabowo@gmail.com
ABSTRACT

A-Folio DPD]ﬂ is a portfolio system build on top of an existing solver DPDEﬂ DPDB is designed
to solve #P problems such as #SAT or Minimal Vertex Cover using dynamic programming and a
database management system. A-Folio DPDB extends its functionality by additionally supporting
the tasks of counting complete and stable extensions given an argumentation framework.

1 Introduction

Bounded treewidth is one of the most cited combinatorial invariants, that originates from graph theory and is well studied
in the area of parametrized complexity. Informally, it can be described as a measurement of graph’s tree-likeness. For
several problems hard for complexity class NP, there are algorithms running in polynomial time under the assumption
that a given parameter (e.g., treewidth) is fixed, indicating fixed-parameter tractability[1] of said algorithms. Practical
implementations exploiting treewidth are oftentimes based on dynamic programming (DP), where a tree decomposition
(TD) is traversed in post-order, i.e., for each node of a TD tables are computed. An algorithm that runs on a TD node
(called local algorighm) usually does so in time exponential in the size of the node. Given that a graph’s treewidth is
defined as the size of the largest node (minus 1) in a TD among all TD’s of the graph, for instances of high treewidth
these DP approaches in practice become intractable. Nevertheless, in the area of Boolean satisfiability this approach
proved to be successful for counting problems and it seems only rational to apply it to other areas, e.g. abstract
argumentation.

2 DPDB

Due to the space reasons of this description only the gist of the underlying idea for DPDB is described below. For readers
interested in detailed explanation, we refer to [2].

DPDB is a general framework designed for solving counting problems. It is written in Python3 and employs PostgreSQL
as a database management system (DBMS).

The initial task that DPDB was capable of solving was the #SAT problem, which asks for the number of satisfying
assignments for a given propositional formula in DIMACS CNF format. The process is as follows: first, the propositional
formula is translated into a so-called primal graph — a graph, where each node represents a variable and there is an edge
between every pair of variables appearing together in a clause. Once a primal graph is obtained, a tool called htcﬂ

"https://github.com/gorczyca/dp_on_dbs/tree/competition
https://github.com/hmarkus/dp_on_dbs
*https://github.com/TU-Wien-DBAI/htd/

https://github.com/gorczyca/dp_on_dbs/tree/competition
https://github.com/hmarkus/dp_on_dbs
https://github.com/TU-Wien-DBAI/htd/

is used to calculate its tree decomposition. The obtained tree decomposition is then traversed in post-order and for
every node a table is generated with a BOOLEAN column for every propositional variable, containing satisfying variable
assignments restricted to those clauses whose variables are contained in the node. In order to calculate the satisfying
assignments, Structured Query Language (SQL) SELECT queries are generated that correspond to the aforementioned
clauses and the task itself is delegated to a DBMS. Solving this task with DBMS not only has the advantage of naturally
describing and manipulating the tables that are obtained during DP, but also allows to benefit from sophisticated database
technology query optimization methods, data-dependent execution plans, capability of dealing with huge tables using
limited amount of main memory (RAM) or dedicated database joins.

DPDB can be extended to other counting problems by implementing generators of SQL SELECT queries corresponding
to DP local algorithms for those problems.

Run A-Folio DPDB with
the task T for semantics o

No [

Does T =CE-c ? i Run p-toksia

Run htd and obtain tree de-
composition of a width TW.

No Enumerate o-extensions
with p-toksia
Yes l
Count enumerated
[Run DPDB } o-extensions

|
|

{ Output solution

Figure 1: Flowchart of A-Folio DPDB system.

3 Extension of DPDB for counting extensions

Recall that the admissibility-based semantics can be defined not only with respect to the sets of arguments that a
particular extension defends or attacks, but also using the notion of a complete labelling. A complete labelling is a total
function £ : Ar — {in, out, undec} where Ar is the set of frameworks’ arguments and it holds that (for a € Ar):

* L(a) = inif all a’s attackers are labelled out or
* L(a) = out if there is an attacker of a labelled in or

* L(a) = undec if neither of the two above cases hold.

From that perspective an extension corresponds to the set of all arguments labelled in. For complete semantics, an
extension corresponds to any complete labelling, whereas for stable semantics only those complete labelling that label
no argument with undec correspond to stable extensions.

Since abstract argumentation framework is a directed graph, an instance of the framework can be directly used to obtain
the tree decomposition. Given the tree decomposition, each node corresponds to a subframework induced by arguments
contained in a node. Again the tree decomposition is traversed in post-order with a SQL SELECT query being generated
at each node that finds labellings of the subframework.

One of the differences between the #SAT problem and counting extensions is that in #SAT every variable is mapped to
either true or false. For counting extensions things get more complicated. Once again, below we present only the
main ideas for local algorithms and refer to [3]] for details regarding algorithms.

3.1 Stable semantics

As mentioned above, a complete labelling corresponding to a stable extension does not label any argument with undec.
Equivalently, a stable extension attacks every argument it does not accept, thus requiring every argument to be labelled
either in or out.

Because of the fact that each node of the tree decomposition contains only a subset A C Ar of arguments and at the
time of the node’s processing not all attack relations have been considered, it is necessary to introduce another labelling
Lt A {in, out, out. } where (a,b € A):

* L(a) = in if a belongs to the extension or
* L(a) = out if a is attacked by an argument b, such that £(b) = in (we say that a has been defeated), or
* L(a) = out,. if a is not in the extension, but so far has not been defeated either.
All arguments labelled with out. are expected to be defeated at some point while traversing the tree decomposition

and therefore change their label to out. If that is not the case, such a labelling is not counted as a corresponding stable
extension.

Since during the computation every argument has to be mapped to one of the three values {in, out, out. }, this value is
represented in a database table by either two BOOLEAN columns or with the addition of null as a BOOLEAN variable.

3.2 Complete semantics

Every complete labelling corresponds to a complete extension, i.e., every argument can be labelled either in, out
or undec. For the same reasons as in case of stable semantics it is necessary to distinguish whether an argument
is expected to be labelled out and undec, or is proven to be labelled as such, thus we distinguish new labelling
Leo i A~ {in,out, out.,undec, undec, } where (a,b € A):

a) = in if a belongs to the extension or

(a)
* L(a) = out if a is attacked (defeated) by an argument b, such that £(b) = in, or
* L(a) = out, if a is not in the extension, but so far has not been defeated either, or
* L(a) = undecif a is attacked by an argument b, such that £(b) = undec and a does not attack nor is attacked
by an argument labelled in, or
* L(a) = undec, if a is expected to be labelled undec, but so far is not attacked by an argument b, such that
(b) = undec and a does not attack nor is attacked by an argument labelled in.

L

Note that arguments can be labelled undec only if they appear in a cycle which all arguments of are labelled undec too,
thus in order to label an argument undec it has to be attacked by an argument labelled undec.

Again, it is required that every argument labelled out. or undec, has at some point its label changed to out or undec,
otherwise the labelling does not count.

Since there are five possible values ({in, out, out., undec, undec, }) of an argument labelling, the value is represented
in a database table by either two BOOLEAN columns, one of which uses the null value or by BOOLEAN and a SMALLINT
columns.

4 A-Folio DPDB’s architecture

By the term of a portfolio solver we understand a solver that internally executes calls to other solvers. This is the
case with our solver: in order to support the stable and complete sub-tracks of the static abstract argumentation track,
M—toksia[4ﬂis used for tasks other than counting, i.e., the tasks DS-o, DC-o and SE-o for o € {CO, ST'}. For some
input instances where the treewidth exceeds some constant treshold, DPDB cannot be used either. In those rare cases the
counting is also performed with the help of p-toksia — by naive counting of all enumerated extensions. The chart of
Figure[T| presents the flow of our solver.

*https://bitbucket.org/andreasniskanen/mu-toksia/

https://bitbucket.org/andreasniskanen/mu-toksia/

S Supported tasks

A-Folio DPDB supports two sub-tracks of the static abstract argumentation track corresponding to stable and complete
semantics, i.e., the tasks:

* CE-ST, CE-CO - directly (assuming small treewidth, otherwise by a call to y-toksia),
* DS-ST, DS-CO, DC-ST, DC-CO, SE-ST, SE-CO - by a call to pi-toksia.

6 Future work

We expect our solver to support the counting task for all semantics listed in competition rules, that is also for preferred,
semi-stable and stage semantics. Furthermore, we plan on modifying the current implementation to utilize the nested
dynamic programming paradigm[5] in order to increase the maximal treewidth acceptable by our solver.

References

[1] Wolfgang Dvorék, Reinhard Pichler, and Stefan Woltran. Towards fixed-parameter tractable algorithms for abstract
argumentation. Artif. Intell., 186:1-37, 2012.

[2] Johannes K. Fichte, Markus Hecher, Patrick Thier, and Stefan Woltran. Exploiting database management systems
and treewidth for counting. 2020.

[3] Giinter Charwat. Tree-decomposition based algorithms for abstract argumentation frameworks. Master’s thesis, TU
Wien, 2012.

[4] Andreas Niskanen and Matti Jarvisalo. p-toksia: An efficient abstract argumentation reasoner. In Diego Calvanese,
Esra Erdem, and Michael Thielscher, editors, Proceedings of the 17th International Conference on Principles of
Knowledge Representation and Reasoning, KR 2020, Rhodes, Greece, September 12-18, 2020, pages 800-804,
2020.

[5] Markus Hecher, Patrick Thier, and Stefan Woltran. Taming High Treewidth with Abstraction, Nested Dynamic
Programming, and Database Technology, pages 343-360. 2020.

[6] Johannes K. Fichte, Markus Hecher, and Arne Meier. Counting complexity for reasoning in abstract argumentation.
In The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19), pages 28272834, 2019.

	Introduction
	DPDB
	Extension of DPDB for counting extensions
	Stable semantics
	Complete semantics

	A-Folio DPDB's architecture
	Supported tasks
	Future work

