Results of the Fourth International Competition on Computational Models of Argumentation

Jean-Marie Lagniez1, Emmanuel Lonca1, Jean-Guy Mailly2 and Julien Rossit2

1: CRIL, CNRS and Université d’Artois, Lens
2: LIPADE - Distributed Artificial Intelligence

ICCMA@IJCAI2021
August 24th, 2021
• The competition aims at nurturing research and development of implementations for computational models of argumentation.
http://argumentationcompetition.org/

• Current steering committee: S. Gaggl (Pres.), N. Oren (Vice-Pres.), J.-G. Mailly (Secr.), F. Cerutti, M. Thimm, M. Vallati, S. Villata

• ICCMA 2015: M. Thimm and S. Villata
 • 18 solvers

• ICCMA 2017: S. Gaggl, T. Linsbichler, M. Maratea and S. Woltran
 • 16 solvers/6 benchmarks

• ICCMA 2019: S. Bistarelli, F. Santini, L. Kotthoff, T. Mantadelis and C. Taticchi
 • 9 solvers/2 benchmarks

1 Background: Abstract Argumentation

2 Competition Rules

3 Participants and Results
 - Participants
 - Results: Exact Solvers
 - Results: Approximate Solvers

4 Conclusion
Abstract Argumentation [Dung 95]

Argumentation Framework (AF) and Extension Semantics

\[F = (A, R) \] where \(A \) is a set of arguments and \(R \subseteq A \times A \) represents attacks between arguments. \(S \subseteq A \) is

- **conflict-free** (cf) if there is no \(a, b \in S \) s.t. \((a, b) \in R \)
- **admissible** (ad) if \(S \in \text{cf}(F) \) and \(S \) defends all its elements
- **stable** (stb) if \(S \in \text{cf}(F) \) and \(S \) attacks each argument in \(A \setminus S \)
- **complete** (co) if \(S \in \text{ad}(F) \) and \(S \) doesn’t defend any argument in \(A \setminus S \)
- **preferred** (pr) if \(S \) is \(\subseteq \)-maximal in \(\text{ad}(F) \)
- **semi-stable** (sst) if \(S \in \text{co}(F) \) and \(S \) is range-maximal in \(\text{co}(F) \)
- **stage** (stg) if if \(S \in \text{cf}(F) \) and \(S \) is range-maximal in \(\text{cf}(F) \)
- **ideal** (id) if \(S \in \text{ad}(F) \) s.t. \(\forall S' \in \text{pr}(F), S \subseteq S' \), and \(S \) is \(\subseteq \)-maximal among those sets
Reasoning Tasks

• **CE-σ**: Given an AF F, how many $σ$-extensions has F?
• **SE-σ**: Given an AF F, provide one $σ$-extension of F (if it exists).
• **DS-σ**: Given an AF F and an argument a, is a in each $σ$-extension of F?
• **DC-σ**: Given an AF F and an argument a, is a in some $σ$-extension of F?
1 Background: Abstract Argumentation

2 Competition Rules

3 Participants and Results
 - Participants
 - Results: Exact Solvers
 - Results: Approximate Solvers

4 Conclusion
Tracks

- Classical track: exact algorithms
- New track: approximate algorithms
- In each track, one sub-track for each semantics
- In each sub-track, several reasoning tasks
Classical Track: Exact Algorithms

• Semantics under consideration: $\sigma \in \{\text{co, pr, stb, sst, stg, id}\}$
 • we choose to remove the grounded semantics (not challenging enough)

• Tasks: Given an AF $F = \langle A, R \rangle$
 • $\text{CE-}\sigma$: give the number of σ-extensions of F
 • $\text{SE-}\sigma$: give one σ-extension of F
 • $\text{DC-}\sigma$: for $a \in A$ an argument, is a credulously accepted in F?
 • $\text{DS-}\sigma$: $a \in A$ an argument, is a skeptically accepted in F?

• Four problems for each subtrack except $\sigma = \text{id}$ ($\text{CE-}\text{id} = 1$, and $\text{DC-}\text{id} = \text{DS-}\text{id}$)
New Track: Approximate Algorithms

- Semantics under consideration: $\sigma \in \{\text{co, pr, stb, sst, stg, id}\}$
- Tasks: Given an AF $F = \langle A, R \rangle$
 - DC-σ: for $a \in A$ an argument, is a credulously accepted in F?
 - DS-σ: $a \in A$ an argument, is a skeptically accepted in F?
- Two problems for each subtrack except $\sigma = \text{id}$ (DC-$\text{id} = \text{DS-}\text{id}$)
I/O and Environment

• Input and output from 2019 edition
 • New problem **CE**: simply print the number of extensions

• Environment:
 • Intel Xeon E5-2637 v4 CPU/128GB RAM
 • Time limit: 600s for the "exact" track, 60s for the "approximate" track
 • Memory limit: 128GB
Scoring Rules

- One ranking for each sub-track
 - six rankings for the “exact” track
 - six rankings for the “approximate” track
 - To be ranked, a solver must participate to the full sub-track
 - No requirement to participate to all the (sub-)tracks

- Scoring: “exact” track
 - Any wrong result: exclusion from the sub-track
 - Correct answer in the runtime limit: 1 point
 - Timeout or non-parsable output: 0 point
 - Tie-break: cumulated runtime over the instances correctly solved

- Scoring: “approximate” track
 - Correct answer in the runtime limit: 1 point
 - Timeout, non-parsable output or wrong result: 0 point
 - Tie-break: cumulated runtime over the instances correctly solved

\[
\text{Score}(Solver, Task) = \sum_{i \in \text{Task}} \text{Score}(Solver, i)
\]

\[
\text{Score}(Solver, Subtrack) = \sum_{\text{Task} \in \text{Subtrack}} \text{Score}(Solver, \text{Task})
\]
Benchmark Selection

ICCMA 2019 instances

• 165 hardest instances from ICCMA 2019
• Goal: check the evolution of solvers during two years

New instances

• 422 new instances:
 • Generate a (meta-)graph G following a classical generation pattern (e.g. Erdos-Renyi, Barabasi-Albert, ...)
 • For each node n_i in this graph, generate a new graph F_i
 • For each edge (n_1, n_2) in G, pick some arguments a_1 in F_1 and a_2 in F_2, and add an edge (a_1, a_2)

• Intuition: create graphs with “communities of arguments”

Query argument selection (\textbf{DS}, \textbf{DC})

• For each AF, one argument is randomly chosen
• The same argument is used for all the \textbf{DS} and \textbf{DC} queries on the same AF
Outline

1 Background: Abstract Argumentation

2 Competition Rules

3 Participants and Results
 • Participants
 • Results: Exact Solvers
 • Results: Approximate Solvers

4 Conclusion
Participants

Exact solvers:

- A-Folio DPDB (Fichte, Hecher, Gorczyca and Dewoprabowo)
- ASPARTIX-V21 (Dvorák, König, Wallner and Woltran)
- ConArg (Bistarelli, Rossi, Santini and Taticchi)
- FUDGE (Thimm, Cerutti, Vallati)
- MatrixX (Heinrich)
- μ-toksia (Niskanen and Järvisalo)
- PYGLAF (Alviano)

Approximate solvers:

- AFGCN (Malmqvist)
- HARPER++ (Thimm)
Participants

Exact solvers:
- A-Folio DPDB (Fichte, Hecher, Gorczyca and Dewoprabowo)
- ASPARTIX-V21 (Dvorák, König, Wallner and Woltran)
- ConArg (Bistarelli, Rossi, Santini and Taticchi)
- FUDGE (Thimm, Cerutti, Vallati)
- MatrixX (Heinrich)
- μ-toksia (Niskanen and Järvisalo)
- PYGLAF (Alviano)

Approximate solvers:
- AFGCN (Malmqvist)
- HARPER++ (Thimm)

5 new solvers and 4 updated solvers from previous ICCMA
Exact Solvers - Complete Subtrack

<table>
<thead>
<tr>
<th>Rank</th>
<th>Solver</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A-Folio DPDB</td>
<td>1838</td>
</tr>
<tr>
<td>2</td>
<td>PYGLAF</td>
<td>1835</td>
</tr>
<tr>
<td>3</td>
<td>(\mu)-toksia</td>
<td>1803</td>
</tr>
<tr>
<td>4</td>
<td>ASPARTIX-V21</td>
<td>1787</td>
</tr>
<tr>
<td>5</td>
<td>FUDGE</td>
<td>1695</td>
</tr>
<tr>
<td>6</td>
<td>MatrixX</td>
<td>759</td>
</tr>
<tr>
<td>7</td>
<td>ConArg</td>
<td>428</td>
</tr>
</tbody>
</table>
Exact Solvers - Preferred Subtrack

<table>
<thead>
<tr>
<th>Rank</th>
<th>Solver</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PYGLAF</td>
<td>1299</td>
</tr>
<tr>
<td>2</td>
<td>μ-toksia</td>
<td>1210</td>
</tr>
<tr>
<td>3</td>
<td>FUDGE</td>
<td>1190</td>
</tr>
<tr>
<td>4</td>
<td>ASPARTIX-V21</td>
<td>1052</td>
</tr>
<tr>
<td>5</td>
<td>ConArg</td>
<td>429</td>
</tr>
<tr>
<td>Rank</td>
<td>Solver</td>
<td>Score</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>PYGLAF</td>
<td>1515</td>
</tr>
<tr>
<td>2</td>
<td>μ-toksia</td>
<td>1103</td>
</tr>
<tr>
<td>3</td>
<td>ASPARTIX-V21</td>
<td>744</td>
</tr>
<tr>
<td>4</td>
<td>ConArg</td>
<td>428</td>
</tr>
</tbody>
</table>
Exact Solvers - Stable Subtrack

<table>
<thead>
<tr>
<th>Rank</th>
<th>Solver</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A-Folio-DPDB</td>
<td>1862</td>
</tr>
<tr>
<td>2</td>
<td>PYGLAF</td>
<td>1743</td>
</tr>
<tr>
<td>3</td>
<td>FUDGE</td>
<td>1585</td>
</tr>
<tr>
<td>4</td>
<td>μ-toksia</td>
<td>1441</td>
</tr>
<tr>
<td>5</td>
<td>ASPARTIX-V21</td>
<td>1429</td>
</tr>
<tr>
<td>6</td>
<td>ConArg</td>
<td>429</td>
</tr>
<tr>
<td>7</td>
<td>MatrixX</td>
<td>259</td>
</tr>
<tr>
<td>Rank</td>
<td>Solver</td>
<td>Score</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>ASPARTIX-V21</td>
<td>879</td>
</tr>
<tr>
<td>2</td>
<td>μ-toksia</td>
<td>788</td>
</tr>
<tr>
<td>3</td>
<td>ConArg</td>
<td>425</td>
</tr>
</tbody>
</table>

PYGLAF was removed from this track because of incorrect results on CE-STG.
Exact Solvers - Stage Subtrack

<table>
<thead>
<tr>
<th>Rank</th>
<th>Solver</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ASPARTIX-V21</td>
<td>879</td>
</tr>
<tr>
<td>2</td>
<td>μ-toksia</td>
<td>788</td>
</tr>
<tr>
<td>3</td>
<td>ConArg</td>
<td>425</td>
</tr>
</tbody>
</table>

- PYGLAF was removed from this track because of incorrect results on CE-STG
Exact Solvers - Ideal Subtrack

<table>
<thead>
<tr>
<th>Rank</th>
<th>Solver</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FUDGE</td>
<td>492</td>
</tr>
<tr>
<td>2</td>
<td>ASPARTIX-V21</td>
<td>306</td>
</tr>
<tr>
<td>3</td>
<td>PYGLAF</td>
<td>238</td>
</tr>
<tr>
<td>4</td>
<td>μ-toksia</td>
<td>216</td>
</tr>
<tr>
<td>5</td>
<td>ConArg</td>
<td>214</td>
</tr>
</tbody>
</table>
• \(\mu\)-toksia was submitted in two versions: single thread and multi-thread (four threads with different configurations of the underlying SAT solver)

- Multi-threading does not seem have a significant impact on a global level
- A more fine grained analysis of the results might provide a better insight of the question
<table>
<thead>
<tr>
<th>Rank</th>
<th>Solver</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HARPER++</td>
<td>747</td>
</tr>
<tr>
<td>2</td>
<td>AFGCN</td>
<td>668</td>
</tr>
<tr>
<td>Rank</td>
<td>Solver</td>
<td>Score</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>AFGCN</td>
<td>567</td>
</tr>
<tr>
<td>2</td>
<td>HARPER++</td>
<td>438</td>
</tr>
<tr>
<td>Rank</td>
<td>Solver</td>
<td>Score</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>AFGCN</td>
<td>522</td>
</tr>
<tr>
<td>2</td>
<td>HARPER++</td>
<td>351</td>
</tr>
</tbody>
</table>
Approximate Solvers - Stage Subtrack

<table>
<thead>
<tr>
<th>Rank</th>
<th>Solver</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AFGCN</td>
<td>392</td>
</tr>
<tr>
<td>2</td>
<td>HARPER++</td>
<td>349</td>
</tr>
</tbody>
</table>
Approximate Solvers - Stable Subtrack

<table>
<thead>
<tr>
<th>Rank</th>
<th>Solver</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AFGCN</td>
<td>637</td>
</tr>
<tr>
<td>2</td>
<td>HARPER+++</td>
<td>457</td>
</tr>
</tbody>
</table>
Approximate Solvers - Ideal Subtrack

<table>
<thead>
<tr>
<th>Rank</th>
<th>Solver</th>
<th>Score</th>
<th>Cumulated Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HARPER++</td>
<td>108</td>
<td>9.848397</td>
</tr>
<tr>
<td>2</td>
<td>AFGCN</td>
<td>108</td>
<td>470.655630</td>
</tr>
</tbody>
</table>
Some Thoughts on the Results

• Breaking open doors: no scoring system is perfect, and other measures would provide other results

• The best solver may differ, depending on applications, constraints, . . .
 • E.g., for approximate reasoning, AFGCN wins when accuracy matters, but HARPER++ wins when time constraints must be fulfilled

• Detailed results and their analysis will be available ASAP
Background: Abstract Argumentation

Competition Rules

Participants and Results
- Participants
- Results: Exact Solvers
- Results: Approximate Solvers

Conclusion
Results Summary

<table>
<thead>
<tr>
<th>Subtrack</th>
<th>Exact Winner</th>
<th>Approximate Winner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
<td>A-Folio-DPDB</td>
<td>HARPER++</td>
</tr>
<tr>
<td>Preferred</td>
<td>PYGLAF</td>
<td>AFGCN</td>
</tr>
<tr>
<td>Semi-Stable</td>
<td>PYGLAF</td>
<td>AFGCN</td>
</tr>
<tr>
<td>Stage</td>
<td>ASPARTIX-V21</td>
<td>AFGCN</td>
</tr>
<tr>
<td>Stable</td>
<td>A-Folio-DPDB</td>
<td>AFGCN</td>
</tr>
<tr>
<td>Ideal</td>
<td>FUDGE</td>
<td>HARPER++</td>
</tr>
</tbody>
</table>
Results Summary

<table>
<thead>
<tr>
<th>Subtrack</th>
<th>Exact Winner</th>
<th>Approximate Winner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
<td>A-Folio-DPDB</td>
<td>HARPER++</td>
</tr>
<tr>
<td>Preferred</td>
<td>PYGLAF</td>
<td>AFGCN</td>
</tr>
<tr>
<td>Semi-Stable</td>
<td>PYGLAF</td>
<td>AFGCN</td>
</tr>
<tr>
<td>Stage</td>
<td>ASPARTIX-V21</td>
<td>AFGCN</td>
</tr>
<tr>
<td>Stable</td>
<td>A-Folio-DPDB</td>
<td>AFGCN</td>
</tr>
<tr>
<td>Ideal</td>
<td>FUDGE</td>
<td>HARPER++</td>
</tr>
</tbody>
</table>

• Exact algorithms: **3 subtracks won by updated solvers** from previous ICCMA, and **3 subtracks won by new solvers**
Results Summary

<table>
<thead>
<tr>
<th>Subtrack</th>
<th>Exact Winner</th>
<th>Approximate Winner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
<td>A-Folio-DPDB</td>
<td>HARPER++</td>
</tr>
<tr>
<td>Preferred</td>
<td>PYGLAF</td>
<td>AFGCN</td>
</tr>
<tr>
<td>Semi-Stable</td>
<td>PYGLAF</td>
<td>AFGCN</td>
</tr>
<tr>
<td>Stage</td>
<td>ASPARTIX-V21</td>
<td>AFGCN</td>
</tr>
<tr>
<td>Stable</td>
<td>A-Folio-DPDB</td>
<td>AFGCN</td>
</tr>
<tr>
<td>Ideal</td>
<td>FUDGE</td>
<td>HARPER++</td>
</tr>
</tbody>
</table>

- Exact algorithms: 3 subtracks won by updated solvers from previous ICCMA, and 3 subtracks won by new solvers
- Approximate algorithm: entirely new
Conclusion

- Thanks and congratulations to all the participants
- Thanks to the ICCMA steering committee
- Thanks to the French Ministry of Research and the Région Hauts de France for funding the CRIL cluster through CPER DATA
- Ideas for the future:
 - Revive the dynamic argumentation track
 - Structured argumentation
 - New metrics for approximate solvers ($\text{CE-}\sigma$, $\text{SE-}\sigma$)
 - Parallel computing
- Detailed results and benchmark descriptions will be available soon at http://argumentationcompetition.org/2021/index.html
- See http://argumentationcompetition.org or https://twitter.com/argcompetition for information on the future of ICCMA