Introducing the Fourth International Competition on Computational Models of Argumentation

Jean-Marie Lagniez1, Emmanuel Lonca1, Jean-Guy Mailly2 and Julien Rossit2

1: CRIL, CNRS and Université d’Artois, Lens
2: LIPADE - Distributed Artificial Intelligence

Third International Workshop on Systems and Algorithms for Formal Argumentation (SAFA 2020)
About ICCMA

• The competition aims at nurturing research and development of implementations for computational models of argumentation.
 http://argumentationcompetition.org/

• Current steering committee: S. Gaggl (Pres.), N. Oren (Vice-Pres.), J.-G. Mailly (Secr.), F. Cerutti, M. Thimm, M. Vallati, S. Villata

• ICCMA 2015: M. Thimm and S. Villata
 • 18 solvers

• ICCMA 2017: S. Gaggl, T. Linsbichler, M. Maratea and S. Woltran
 • 16 solvers/6 benchmarks

• ICCMA 2019: S. Bistarelli, F. Santini, L. Kotthoff, T. Mantadelis and C. Taticchi
 • 9 solvers/2 benchmarks

Outline

1. Background: AFs and ABA
2. Competition Rules
3. Conclusion
Abstract Argumentation [Dung 95]

Argumentation Framework (AF) and Extension Semantics

\(F = (A, R) \) where \(A \) is a set of arguments and \(R \subseteq A \times A \) represents attacks between arguments. \(S \subseteq A \) is

- **conflict-free (\text{cf})** if there is no \(a, b \in S \) s.t. \((a, b) \in R\)
- **admissible (\text{ad})** if \(S \in \text{cf}(F) \) and \(S \) defends all its elements
- **stable (\text{stb})** if \(S \in \text{cf}(F) \) and \(S \) attacks each argument in \(A \setminus S \)
- **complete (\text{co})** if \(S \in \text{ad}(F) \) and \(S \) doesn’t defend any argument in \(A \setminus S \)
- **preferred (\text{pr})** if \(S \) is \(\subseteq \)-maximal in \(\text{ad}(F) \)
- **semi-stable (\text{sst})** if \(S \in \text{co}(F) \) and \(S \) is range-maximal in \(\text{co}(F) \)
- **stage (\text{stg})** if \(S \in \text{cf}(F) \) and \(S \) is range-maximal in \(\text{cf}(F) \)
- **ideal (\text{id})** if \(S \in \text{ad}(F) \) s.t. \(\forall S' \in \text{pr}(F), S \subseteq S' \), and \(S \) is \(\subseteq \)-maximal among those sets
ABA Framework

\[F = (L, R, A, \overline{\top}) \text{ where} \]

- \(L \): set of symbols (language)
- \(R \): set of rules \(x_0 \leftarrow x_1, \ldots, x_n, x_i \in L \) and \(n \geq 0 \)
- \(A \subseteq L \): assumptions
- \(\overline{\top} : A \rightarrow L \): contrariness

ABA Arguments and Attacks: An Example

\[F = \langle L, R, A, \overline{\top} \rangle \text{ with } L = \{a, b, c, p, q, r, s, t\}, \quad R = \{(p \leftarrow q, a), (q \leftarrow), (r \leftarrow b, c)\}, \quad A = \{a, b, c\} \text{ and } \overline{a} = r, \overline{b} = s, \overline{c} = t. \]

- \(\text{Arg}_1 = (\{b, c\} \vdash r) \): from the rule \(r \leftarrow b, c \)
- \(\text{Arg}_2 = (\{a\} \vdash p) \): from the rules \(q \leftarrow \) and \(p \leftarrow q, a \)
- \(\text{Arg}_1 \) attacks \(\text{Arg}_2 \): \(r \) (concl. of \(\text{Arg}_1 \)) is contrary of \(a \) (an assumption in \(\text{Arg}_2 \))
Assumption-based Extensions

- $A_1 \subseteq A$ attacks $A_2 \subseteq A$ iff an argument supported by a subset of A_1 attacks an argument supported by a subset of A_2

- A set of assumptions A_1 defends an assumption a if A_1 attacks each set of assumptions that attacks a

- Then, extension semantics are defined classically, e.g. for $S_A \in A$,
 - $S_A \in \text{cf}(F)$ iff it does not attack itself
 - $S_A \in \text{ad}(F)$ if $S_A \in \text{cf}(F)$ and S_A defends all its elements
 - ...
Outline

1. Background: AFs and ABA
2. Competition Rules
3. Conclusion
Tracks

- Main track: static abstract argumentation
- Dynamic track: evolving AFs
- Structured argumentation: ABA
- In each track, one sub-track for each semantics
- In each sub-track, several reasoning tasks
Main Track: Static AFs

• Semantics under consideration: \(\sigma \in \{\text{co, pr, stb, sst, stg, id}\} \)
 • we choose to remove the grounded semantics (not challenging enough)
• Tasks: Given an AF \(F = \langle A, R \rangle \)
 • \(\text{CE}-\sigma \): give the number of \(\sigma \)-extensions of \(F \)
 • \(\text{SE}-\sigma \): give one \(\sigma \)-extension of \(F \)
 • \(\text{DC}-\sigma \): for \(a \in A \) an argument, is \(a \) credulously accepted in \(F \)?
 • \(\text{DS}-\sigma \): \(a \in A \) an argument, is \(a \) skeptically accepted in \(F \)?
• Four problems for each subtrack except \(\sigma = \text{id} \) (\(\text{CE-id} = 1 \), and \(\text{DC-id} = \text{DS-id} \))
Main Track: Static AFs

- Semantics under consideration: $\sigma \in \{\text{co}, \text{pr}, \text{stb}, \text{sst}, \text{stg}, \text{id}\}$
 - we choose to remove the grounded semantics (not challenging enough)
- Tasks: Given an AF $F = \langle A, R \rangle$
 - $\text{CE-}\sigma$: give the number of σ-extensions of F
 - $\text{SE-}\sigma$: give one σ-extension of F
 - $\text{DC-}\sigma$: for $a \in A$ an argument, is a credulously accepted in F?
 - $\text{DS-}\sigma$: $a \in A$ an argument, is a skeptically accepted in F?
- Four problems for each subtrack except $\sigma = \text{id}$ ($\text{CE-id} = 1$, and $\text{DC-id} = \text{DS-id}$)
• Semantics under consideration: $\sigma \in \{\text{co, pr, stb}\}$
• Tasks: $\text{CE-}\sigma$, $\text{SE-}\sigma$, $\text{DC-}\sigma$, $\text{DS-}\sigma$
• New: instead of reading the full set of updates in a text file given as an input, the solvers will wait for updates on the standard input
 • “online” behaviour
 • seems closer to the process of a real debate: one does not generally know all the future arguments at once
Structured Argumentation Track: ABA

- Semantics under consideration: $\sigma \in \{\text{co, pr, stb}\}$
- Tasks: $\text{CE}-\sigma, \text{SE}-\sigma, \text{DC}-\sigma, \text{DS}-\sigma$
 - Reminder: we consider the assumption version of the semantics
Scoring Rules

- One ranking for each sub-track
 - six rankings for abstract argumentation
 - three rankings for dynamic argumentation
 - three rankings for ABA
- To be ranked, a solver must participate to the full sub-track
- No requirement to participate to all the (sub-)tracks

- Scoring:
 - Any wrong result: exclusion from the sub-track
 - Correct answer in the runtime limit: 1 point
 - Timeout or non-parsable output: 0 point
 - Tie-break: cumulated runtime over the instances correctly solved
Outline

1. Background: AFs and ABA
2. Competition Rules
3. Conclusion
Conclusion

• Solver interface, call for participation and call for benchmarks will be released before the end of 2020

• Tentative deadlines:
 • Jan 15, 2021: Declaration of intent by participants
 • Feb 1, 2021: Benchmark submission
 • Mar 15, 2021: Solver submission
 • Apr 15, 2021: System descriptions
 • Aug, 2021: Presentation of results

• For up to date information,
 • Officiel website: http://argumentationcompetition.org/2021/
 • Mailing list: argumentationcompetition@inria.fr
 • Soon: probably Twitter

• For any question, iccma2021@cril.univ-artois.fr

• We welcome all participations from academics, students, or anyone: spread the word!