
ASPARTIX-V: Utilizing Improved ASP
Encodings

Alessandro Ronca1, Johannes Peter Wallner2, and Stefan Woltran3

1 La Sapienza, University of Rome
2 University of Helsinki, Department of Computer Science, HIIT

3 Vienna University of Technology, Institute of Information Systems

Abstract. ASPARTIX-V is a novel system for solving reasoning tasks
for argumentation frameworks under preferred semantics. Similarly to
its predecessor, it calls a state-of-the-art ASP solver with ASP encodings
tuned for performance. We describe the system architecture, the main
components, and how to obtain ASPARTIX-V.

1 System Architecture

ASPARTIX-V (Answer Set Programming Argumentation Reasoning Tool – Vi-
enna) takes as input an argumentation framework (AF) [1] in apx format [2].
Together with an answer-set programming (ASP) encoding for preferred seman-
tics, the answer-sets are in a 1-to-1 correspondence with the preferred extensions
of the given AF. Utilizing capabilities of modern ASP solvers, we can straight-
forwardly augment this workflow (see Fig. 1) to support the desired reasoning
tasks. ASP solvers themselves offer enumeration of all answer-sets and returning
an arbitrary one. For query-based reasoning, we add a single ASP constraint
stating that the queried argument has to be outside the preferred extension
(skeptical reasoning). Unsatisfiability of the resulting program means that the
queried argument is skeptically accepted.

The underlying ASP solver is clingo 4.4 [5, 6]. We in particular make use of
the conditional literal [7, 4] language extension offered by clingo.

clingo

arg(a).
arg(b).
att(a,b).

input

ASP encoding

[[a]]

resultASPARTIX-V

Fig. 1. ASPARTIX-V system architecture



2 Novel ASP Encodings

The predecessor of ASPARTIX-V is ASPARTIX [2]. In both systems, preferred
semantics is encoded as a disjunctive logic program. While the latter makes heavy
use of so-called loop constructs in ASP, our new system is able to do without
and uses conditional literals for enhancing performance. Intuitively, conditional
literals allow to use, e.g., a dynamic head in a disjunctive rule that contains a
literal iff its condition is true. The loop constructs can be avoided by alternative
characterizations of preferred semantics.

We briefly sketch some of the main ideas of our novel encoding for pre-
ferred semantics. For both ASPARTIX and ASPARTIX-V the so-called satu-
ration technique (which originates from the complexity analysis of disjunctive
logic programs [3]) is employed. Intuitively, in the saturation technique encod-
ings for preferred semantics we make a first “guess” for a set of arguments in the
framework, and then verify if this set is admissible. To verify if this set is also
subset maximal admissible, we perform a second guess and verify if this second
guess is an admissible set that is a superset of the first guess. Usage of default
negation within the saturation technique for the second guess is restricted, and
thus in ASPARTIX a loop-style encoding checks if the second guess is admissible.
Roughly, a loop construct in ASP checks a certain property for the least element
in a set, and then “iteratively” for each (immediate) successor. If the property
holds for the greatest element, it holds for all elements. In our encoding, the
second guess is constructed using a disjunctive rule with a dynamic head. We
illustrate the main idea in Listing 1.1.

Listing 1.1. Rule with dynamic head

witness (Z) : att (Z ,Y) ← witness (X) , att (Y,X) .

The atoms with the predicate witness correspond to the second guess. After
making sure that the second guess is non-empty (via another rule), this disjunc-
tive rule with conditional literals “adds” for attacked witnesses other witnesses
that defend them. The idea is to keep this second guess small to overcome com-
putational overhead. Additional rules then verify if the witness set represents an
admissible set that may be combined with the first guess to result in a larger
admissible set. If this is the case, the first guess does not represent a preferred
extension.

2.1 Supported Reasoning Tasks

ASPARTIX-V supports the following reasoning tasks:

– skeptical acceptance under preferred semantics,

– returning a single preferred extension, and

– enumerating all preferred extensions.



3 Competition Specific Settings

For conforming to the ICCMA 2015 specifications, we utilized a (slightly modi-
fied) bash script from the competition that in particular takes care of the correct
output formating. After initial explorative performance testing, we decided to
use clingo in its default setting, i.e., not using non-standard heuristical settings.

4 Web Access and License

The novel encodings are available from http://www.dbai.tuwien.ac.at/proj/

argumentation/systempage/ under “encodings for clingo using conditional dis-
junction”. For running the encodings, clingo 4.4 is required, which can be down-
loaded from http://potassco.sourceforge.net. Notice that clingo 4.4 is pub-
lished under the GNU public license (version 3).

Acknowledgements

This work has been funded by the Austrian Science Fund (FWF) through
projects I1102 and Y698, and by Academy of Finland through grants 251170
COIN and 284591.

References

1. Dung, P.M.: On the Acceptability of Arguments and its Fundamental Role in Non-
monotonic Reasoning, Logic Programming and n-Person Games. Artificial Intelli-
gence 77(2), 321–358 (1995)

2. Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argumen-
tation frameworks. Argument & Computation 1(2), 147–177 (2010)

3. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming:
Propositional case. Ann. Math. Artif. Intell. 15(3-4), 289–323 (1995)

4. Gebser, M., Kaminski, R., Kaufmann, B., Lindauer, M., Ostrowski, M., Romero, J.,
Schaub, T., Thiele, S.: Potassco User Guide, second edn. (2015), http://potassco.
sourceforge.net

5. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control:
Preliminary report. In: Leuschel and Schrijvers [6], Theory and Practice of Logic
Programming, Online Supplement

6. Leuschel, M., Schrijvers, T. (eds.): Technical Communications of the Thirtieth Inter-
national Conference on Logic Programming (ICLP’14), vol. 14(4-5) (2014), Theory
and Practice of Logic Programming, Online Supplement

7. Syrjänen, T.: Logic Programs and Cardinality Constraints: Theory and Practice.
Ph.D. thesis, Aalto University (2009)


