
LamatzSolver-v0.1: A grounded extension finder
based on the Java-Collection-Framework

Nico Lamatz

FernUniversität in Hagen, 58084 Hagen, Germany
Department of Knowledge-Based Systems, University of Hagen

http://www.fernuni-hagen.de/wbs/

Abstract. This paper describes the system architecture of LamatzSolver-
v0.1, a solver for extension generation of Dung‘s abstract framework [4]
in the contest of International Competition on Computational Models
of Argumentation (ICCMA’15). The solver is implemented in Java and
determines all extensions of grounded semantics. The algorithm used
is oriented on the characteristic function [1, 4] and based on the Java-
Collections-Framework.

Keywords: ArgumentContainer, Characteristic function, Grounded se-
mantics, HashMap, Java-Collection-Framework

1 System architecture

LamatzSolver-v0.1 uses the system architecture summarized in Figure 1.

The class LamatzSolver inherits all necessary methods from AbstractSolver of
probo [3] for the command line interface which represents the unique possibil-
ity for the user to communicate with the system. LamatzSolver hands the input
over to TgfParserAAS. Tgf is the only accepted data format. In comparison with
the TgfParser from probo TgfParserAAS changed the representation of Dung‘s
abstract framework. Each argument is stored by its name in a class called Argu-
mentContainer. Furthermore this class stores each attack from and attack on in
a HashMap. All ArgumentContainer are separately stored in a HashMap. The
class AdvanceAAS investigates each argument about the attacks. If the HashMap
“attacksFrom” is empty, the argument is also stored in another HashMap called
“typeZero”. There are two more types of HashMaps “typeOne” and “typeTwo”
beside the specified one. As explained, the system only generates the grounded
extension but AdvanceAAS provides with these two additional HashMaps the
opportunity to advance the system. HashMap “typeOne” stores arguments which
can defend themself and HashMap “typeTwo” stores arguments that only can
be defended by other arguments.

After preparation phase the class LamatzSolver gets a reference to AdvanceAAS
and overhands this to class GroundedExtensionFinder. GroundedExtensionFinder



2 System Description of LamatzSolver-v0.1

is now able to get all important information for generating the grounded ex-
tension. After determination GroundedExtensionFinder returns the HashMap
“grounded”. Then the class LamatzSolver brings the grounded extension into
the required form for probo.

Every return command is implemented with a public method. The determi-
nation of the HashMaps of AdvanceAAS as well as GroundedExtensionFinder
are private and consequently not visible from the outside.

LamatzSolver AbstractSolver

INPUT OUTPUTTgfParserAAS

AdvanceAAS

deliverpAF
aspHashMap

handpINPUT
over

returnpAF
withpfurher
information

GroundedExtensionFinder

deliverpAAS

returnpgrounded
Extension

Fig. 1. System Architecture of LamatzSolver-v0.1

2 How the problem is solved

Finding the grounded extension is elementary for determination of other seman-
tics. In fact it is really important getting a solution quickly. The algorithm of
LamatzSolver-v0.1 can be described in five steps as follows:

1. Checks if HashMap “typeZero” is empty. If the answer is “yes” than a empty
HashMap called “grounded” is being returned, otherwise the build() method
will be called.

2. In the build() method each argument of HashMap “typeZero” is copied to
the HashMap “grounded”.

3. Then the size of HashMap “grounded” is stored in a parameter “prev” and
for each argument the defended arguments will be determined and added to
the HashMap “grounded”. According to this each ArgumentContainer has
a reference of the attacks on other arguments. These arguments are stored
in a HashMap “out” [2] and the attacks of these arguments are candidates
for the grounded extension. Then the method checks if all attackers of a
candidate are defeated.



System Description of LamatzSolver-v0.1 3

4. Step 3 is being repeated for HashMap “grounded” until the HashMap does
not grow anymore. This is realized with a comparison of the current size of
HashMap “grounded” and the parameter “prev”.

5. HashMap “grounded” will be returned.

In a nutshell GroundedExtensionFinder is an implementation of the character-
istic function. The runtime depends on the problem. For example the problem
“real 4” from iccma20151 delivers the following runtime2 result:

Start:
Attacks: 146530
Arguments: 100000
Size of grounded: 9568
Time elapsed: 0.41 Seconds

Annotation: This result is a Java console output from a separate class which
is not part of LamatzSolver-v0.1.

3 Design choices and gained experience

There are two design choices made in LamatzSolver-v0.1. First is the implemen-
tation of sets in a mathematical sense and second the relation between argu-
ments. Java provides for sets the Collections-Framework. Thus important oper-
ations for sets like intersect, minus, union and complement are possible. For a
relation the Collection-Framework can be used too, but it is circuitous without
a separate class. LamatzSolver-v0.1 uses a container class ArgumentContainer
which stores the name of argument and the attacks from and on arguments. Sets
like attacks are implemented as a HashMap. The advantage of a HashMap in
comparison to other data structures as HashSet or Set is the access to the Ar-
gumentContainer. HashSets or Sets have to be searched by an iterator from the
beginning or the last element of the iterator. In a HashMap the key is sufficient
for getting access to the object. In LamatzSolver-v0.1 HashMaps are organized
with the key of the argument name and the value ArgumentContainer. This
choice is based upon the fact that all information about an argument should be
available at any point of runtime. Resources should simply be used for extension
generation.

References

1. Christoph Beierle, Gabriele Kern-Isberne: Methoden wissensbasierter Systeme, 5.
Auflage, Hagen und Dortmund 2014

1 http://argumentationcompetition.org/2015/rules.html
2 The system is tested on a machine with a Intel(R) Core(TM) i5-4570 CPU @ 3.20

GHz processor and 8 GB RAM with 1333 MHZ.



4 System Description of LamatzSolver-v0.1

2. Martin Caminada: A Gentle Introduction to Argumentation Semantics, 2008
3. Federico Cerutti, Nir Oren, Hannes Straß, Matthias Thimm, Mauro Vallati: The

First International Competition on Computational Models of Argumentation (IC-
CMA’15)

4. Phan Minh Dung: On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games, Artificial Intelli-
gence 77 (1995) 321-357


