
ASGL: Argumentation Semantics in Gecode and
Lisp

Kilian Sprotte

University of Hagen,
Knowledge-Based Systems,

Universitätsstr. 1,
58097 Hagen, Germany

kilian.sprotte@gmail.com

Abstract. ASGL is a solver for argumentation semantics, capable of an-
swering queries with respect to grounded, complete, preferred, and stable
semantics. It is built based on GECODE, a generic CSP solver. ASGL
itself is mainly written in Common Lisp. This paper presents a descrip-
tion of its system components and, for a selection of the computational
tasks, provides details on how ASGL approaches them.

1 Introduction

ASGL [6] is a solver for argumentation semantics. Given an argumentation
framework AF = (Ar, att), answers to queries with respect to grounded, com-
plete, preferred, and stable semantics can be computed. Specifically, for each
semantics, ASGL allows to enumerate one or all extensions and to report on the
status of an argument, while taking either a credulous or a skeptical point of
view [4].

ASGL is mainly written in Common Lisp and CLOS [7], with some parts
written in C++, which is used for low-level parsing of the input file and, more
importantly, to interface to GECODE [3], a generic CSP solver library, which is
used in ASGL as a backend.

The plan of the paper is as follows. Section 2 presents GECODE and ECL [2],
the Common Lisp implementation on which ASGL is built. Then, the realization
of the computational tasks is exemplified with respect to grounded semantics
in Section 3 and preferred semantics in Section 4. Finally, Section 5 details
reductions of queries performed by ASGL.

2 System Components

GECODE, the generic constraint development environment, is a toolkit for de-
veloping constraint-based systems and applications. It is an efficient, generic
CSP solver, featuring among others finite domain integer variables and finite set
variables and constraints (see Section 4). Conceived as a C++ library, it can be
easily integrated with other systems and it is designed to be open for extension

2 Kilian Sprotte

by user code. For instance, it is possible to program new search engines that can
be regarded en par to the already built-in ones, such as depth-first search and
branch-and-bound search, without requiring the user to dive into low-level code.

The abstraction that new search engines can be programmed with is called
computation space [5]. A computation space, which is a first-class citizen, en-
capsulates a speculative computation involving constraints. New constraints can
be posted on a space. Another space operation is to wait for it to become stable,
i.e. for propagation to reach a fixpoint (see Section 3).

ECL is an implementation of Common Lisp that features a byte-code com-
piler, but can also compile to C code, which is then further compiled by the host’s
native compiler. This allows for easy integration with C or C++ libraries. While
bindings to such libraries are usually generated with a tool such as SWIG [1],
ECL has a feature that makes this unnecessary. It allows the user by the use of
an inline construct ffi:c-inline to directly emit fragments of C or C++ code as
part of a Lisp function definition. These fragments are placed (almost) verbatim
within the generated C code.

As an example, this allows for the definition of a Lisp function space-status for
the aforementioned operation on a space, which calls the underlying GECODE
method status.

(defun space-status (space)
(let ((status

(ffi:c-inline (space) (:pointer-void) :int
"{

// wait for space to become stable, then retrieve status
Gecode::SpaceStatus status = (((Gecode::Space*)(#0))->status());

switch (status) {
case Gecode::SS_FAILED: @(return 0) = 1; break;
case Gecode::SS_SOLVED: @(return 0) = 2; break;
case Gecode::SS_BRANCH: @(return 0) = 3; break;
default: @(return 0) = 100; break;
}
}")))

(ecase status
(1 :failed)
(2 :solved)
(3 :branch))))

ASGL makes use of typical Lisp features, such as CLOS, the Common Lisp
Object System, macros (see Section 5) and first-class functions to orchestrate
on a high level the parsing of the command-line arguments and input file, the
creation and appropriately constraining of a computation space, the invocation
of a search engine and then, finally, the formatting of the output.

3 Grounded Semantics

Exactly one grounded extension exists. It contains all the arguments which are
not defeated, as well as that arguments which are directly or indirectly defended
by non-defeated arguments. An algorithm to compute this extension in linear
time is given by Caminada [4]; it progresses iteratively until a fixpoint is reached.

ASGL: Argumentation Semantics in Gecode and Lisp 3

In ASGL, no special purpose algorithm for grounded semantics has been
implemented. A computation space is created as for the other semantics with
an array of |Ar| boolean variables: ASGL uses an extension-based encoding for
solutions. Constraints are then posted on the space and the status is queried by
space-status, which first waits for the space to become stable, i.e. propagation
to reach a fixpoint. Subsequently, the grounded extension can be read from the
space by including all arguments whose corresponding variables are instantiated
to true.

4 Preferred Semantics

The preferred extensions are all those complete extensions that are maximal
with respect to set inclusion. In general, one or more preferred extensions may
exist.

The task of computing some preferred extension is implemented in ASGL
like a classical optimization problem with branch-and-bound search. As soon as
one solution has been found, all further solutions are constrained to be better
than the current solution. If no more solutions can be found, the current solution
is maximal.

In the case of preferred extensions, an extension is better than another iff
it is a proper superset of the other. In order to allow this kind of constraint to
be posted, ASGL makes use of an additional set variable that represents the
extension as a set. For consistency, the set variable is connected to the array
of boolean variables by a channeling constraint. A branch-and-bound search
engine is already part of standard GECODE. This allows for a straightforward
implementation of this strategy. The search for a maximal solution is further
supported by a value heuristic: When a choice needs to be made, an argument
is considered to be included first, before it is considered to be excluded.

No built-in search engine in GECODE can be used to efficiently enumerate
all preferred extensions. In the development of ASGL, an attempt has been made
to implement a multi-bab-engine for this purpose. This engine essentially keeps
a master computation space that stays unmodified by individual searches. Only
a clone of the master is passed to the built-in branch-and-bound search engine.
Whenever this engine finds a preferred extension, the master is constrained not
to be a subset of this extension and the process repeats.

Unfortunately, this strategy turned out to be slower than filtering all com-
plete extensions for maximality – at least for small input graphs. In the current
version of ASGL, this work has therefore been abandoned in favor of this more
simple approach. We expect that repeatedly restarting from the master space
incurred too much overhead by repeating work already performed in previous
invocations. This effect could possibly be mitigated by utilizing no-good learning
or by employing more sophisticated variable ordering heuristics, such as accu-
mulated failure count or activity that build on information gained from previous
searches.

4 Kilian Sprotte

5 Reductions

ASGL allows the product of grounded, complete, preferred, and stable semantics
and enumeration of some or all extensions, credulous and skeptical inference,
in total 16 different problems to be solved. In this problem space numerous
reductions are possible. ASGL currently makes use of the following rules, which
are – thanks to Lisp macros – written exactly as given here in the source code:

1. (translate (:se :co) -> (:se :gr))

2. (translate (:ds :co) -> (:ds :gr))

3. (translate (:dc :pr) -> (:dc :co))

The first and second rule are quite simple: 1. When asked for some complete
extension, one could simply compute the grounded extension. 2. a) If an argu-
ment is included in all complete extensions, it is also included in the grounded
extension. b) The grounded extension is a subset of all complete extensions,
therefore an argument included in the grounded extension is included in all
complete extensions.

3. The third rule is more subtle. It states that whether an argument is in-
cluded in some preferred extension can be reduced to the question of whether the
argument is included in some complete extension. This can be shown like this: a)
If an argument is included in some preferred extension, it is also included in some
complete extension. b) If an argument is included in some complete extension,
this extension is either maximal – a preferred extension or a preferred extension
must exist that is a superset of the complete extension, hence it includes the
argument.

References

1. Beazley, D.M.: Swig: An easy to use tool for integrating scripting languages with
c and c++. In: Proceedings of the 4th Conference on USENIX Tcl/Tk Workshop,
1996 - Volume 4. pp. 15–15. TCLTK’96, USENIX Association, Berkeley, CA, USA
(1996)

2. Garcia-Ripoll, J.J., Kochmański, D.: Ecl: Embeddable common-lisp (2001), available
from http://ecls.sourceforge.net

3. Gecode Team: Gecode: Generic constraint development environment (2006), avail-
able from http://www.gecode.org

4. Modgil, S., Caminada, M.W.: Proof theories and algorithms for abstract argumen-
tation frameworks. In: Rahwan, I., Simari, G. (eds.) Argumentation in Artificial
Intelligence, pp. 105–129. Springer Publishing Company, Incorporated (2009)

5. Schulte, C.: Programming constraint inference engines. In: Smolka, G. (ed.) Pro-
ceedings of the Third International Conference on Principles and Practice of Con-
straint Programming. Lecture Notes in Computer Science, vol. 1330, pp. 519–533.
Springer-Verlag, Schloß Hagenberg, Austria (Oct 1997)

6. Sprotte, K.: Asgl: Argumentation semantics in gecode and lisp (2015), available
from https://github.com/kisp/asgl

7. Steele, Jr., G.L.: Common Lisp: the language. Second edn. (1990)

