
Carneades ICCMA: A Straightforward
Implementation of a Solver for Abstract
Argumentation in the Go Programming

Language

Thomas F. Gordon

Fraunhofer FOKUS
Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany

Abstract. The Carneades entry to the 2015 International Competition
on Computational Models of Argument (ICCMA) is a straight-forward
implementation of a solver for reasoning tasks in abstract argumentation
frameworks [1]. All of the reasoning tasks (computing one or all exten-
sions and deciding whether an argument is credulously or skeptically
inferred) and Dung semantics (grounded, complete, preferred, stable)
covered by the competition have been implemented. The solver has been
implemented in Go, a mainstream statically-typed, procedural program-
ming language with a C-like syntax, garbage collection, good builtin sup-
port for concurrency and a large standard library. The aim is to provide a
concise and readable implementation suitable for pedagogical purposes,
using only common and widely familiar programming constructs and
with no dependencies on external libraries or programs.

Keywords: abstract argumentation frameworks, computational models
of argument, grounded semantics

1 Introduction

The Carneades entry to the 2015 International Competition on Computational
Models of Argument (ICCMA) is a straight-forward implementation of a solver
for reasoning tasks in abstract argumentation frameworks [1]. While part of
the open source Carneades project1, this code was newly developed specifi-
cally for the ICCMA competition. The focus of the Carneades project has not
been abstract argumentation, but rather structured argumentation. Nonetheless,
Carneades has for some time included an implementation of a solver for Dung
abstract argumentation frameworks, using grounded semantics. This solver was
implemented to overcome a limitation of the original computational model of
Carneades [2], which did not allow argument graphs to contain cycles, by map-
ping Carneades argument graphs to abstract argumentation frameworks in a
manner similar to ASPIC+ [4].

1 https://carneades.github.io/

2 Tom Gordon

The Carneades entry for the ICCMA competition implements all of the rea-
soning tasks (computing one or all extensions and deciding whether an argument
is credulously or skeptically inferred) for all the semantics of abstract argumen-
tation frameworks (grounded, complete, preferred, stable) covered by the com-
petition.

2 System Architecture

The solver has been implemented in Go [6], a mainstream statically-typed, pro-
cedural programming language with a C-like syntax, garbage collection, good
builtin support for concurrency and a large standard library.

The aim is to provide a concise and readable implementation suitable for
pedagogical purposes, using only common and widely familiar programming con-
structs. Although the implementation of the tractable problems, using grounded
semantics, is quite efficient, the simple generate-and-test algorithms implemented
for the combinatorial problems are not expected to perform well compared to
entries based on highly-optimized SAT and ASP solvers.

The implementation closely follows high-level specifications of abstract ar-
gumentation frameworks [5] and has not been optimized in any significant way,
with perhaps one exception: The implementation of grounded semantics keeps
track of whether a mutable labelling has changed, in its main loop, and exits the
loop when no changes were made, without having to explicitly test whether two
labellings are equivalent.

For the combinatorial problems, for complete, preferred and stable semantics,
the solver generates and tests all subsets of the power set of the arguments in the
framework. The subsets are generated using an algorithm found on the Web.2

Using this algorithm, every subset is generated and visited exactly once.
Using Go’s support for first-class and higher-order functions, procedures were

implemented for finding the first subset of arguments which satisfy a given pred-
icate and for applying some procedure to each subset. Using functions imple-
menting predicates for complete and stable extensions, it is then simple to find
the first or all complete extensions and then to filter the complete extensions to
find one or more which are also stable.

Implementing preferred semantics was only a bit more difficult. While iter-
ating over the complete extensions, a list of candidate extensions is maintained.
When a new complete extension is found, it replaces every candidate which is a
subset of the new extension in the list of candidates.

3 Lessons Learned and Future Work

For preferred semantics, we first tried the algorithm in [3], but found that it
performed much worse than the straightforward generate-and-test algorithm we

2 http://www.stefan-pochmann.info/spots/tutorials/sets_subsets/

Carneades 3

settled on in the end. The algorithm in [3] appears to visit each member of the
powerset of arguments in the framework more than once.

Argument sets are currently represented as hash tables, from arguments to
boolean values. Simulating immutable operations on sets involves creating copies
of the hash tables. An obvious first step toward improving the performance of
this implementation would be to replace this representation with an immutable,
persistent representation of argument sets optimized for subset and equality
comparisons.

The Go programming language provides excellent support for concurrent
algorithms, but we did not make use of this feature, since it is not yet clear to
us how to refactor the program to make good use of concurrency. We considered
implementing the generate and test procedures as separate tasks, communicating
via a channel. We may try this, but expect that the testing task will not be able
to keep up with the generation task, which takes at most only a few seconds,
and thus not divide up the work well among the available processors.

We are pleased with the performance of the implementation of grounded
semantics, which seems to be a bit faster than any other implementation we
are familiar with, in our informal and unsystematic benchmark tests. Of course,
the problems are all tractable when using grounded semantics, so this may not
be especially interesting in the context of the ICCMA. Surely the combinatorial
problems are more challenging and interesting for the purpose of the competition.
However, in our experience grounded semantics is well suited for many practical
applications of argumentation frameworks, so an efficient implementation may
be of some interest for developers of such applications.

Our implementation of the combinatorial problems is not nearly as efficient
as the Tweety reference implementation [7], in Java, although Go and Java
have comparable performance. On the other hand, our implementation in Go
is considerable shorter and more readable, presumably due to Go being a less
verbose programming language. That said, in the future we may try to optimize
our implementation, learning from the Tweety implementation.

4 Downloading and Installing the Code

The source code of the Carneades ICCMA entry is available on Github at https:
//github.com/carneades/carneades-4.

Prerequisites for building the system are:

– Go, http://golang.org/, and
– Git, http://git-scm.com/

To build the system:
Set the GOPATH environment variable to a directory for Go packages, e.g.

$ mkdir ~/go

$ typeset -x GOPATH=~/go

4 Tom Gordon

Use the go tool to get, build and install the carneades-iccma executable
from Github:

$ go get github.com/carneades/carneades-4/internal/cmd/carneades-iccma

The carneades-iccma executable should now be installed in

$GOPATH/bin/carneades-iccma

You can execute the program using this full path. Alternatively, add $GOPATH/bin

to your PATH environment. You can then execute the command directly, as in

$ carneades-iccma -p EE-GR -f ...

These instructions are subject to change. See the INSTALL.md file for current
instructions.

References

1. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence
77(2), 321–357 (1995)

2. Gordon, T.F., Prakken, H., Walton, D.: The Carneades Model of Argument and
Burden of Proof. Artificial Intelligence 171(10-11), 875–896 (2007)

3. Modgil, S., Caminada, M.: Proof Theories and Algorithms for Abstract Argumen-
tation Frameworks. In: Rahwan, I., Simari, G.R. (eds.) Argumentation in Artificial
Intelligence, pp. 105–129. Spinger (2009)

4. Prakken, H.: An abstract framework for argumentation with structured arguments.
Argument & Computation 1, 93–124 (2010)

5. Rahwan, I., Simari, G.R.: Argumentation in Artificial Intelligence. Springer Verlag
(2009)

6. Summerfield, M.: Programming in Go Creating Applications for the 21st Century.
Addison-Wesley (2014)

7. Thimm, M.: Tweety-a comprehensive collection of Java libraries for logical aspects
of artificial intelligence and knowledge representation. In: Proceedings of the 14th
International Conference on Principles of Knowledge Representation and Reasoning
(KR14) (2014)

