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Abstract. In this paper we introduce prefMaxSAT, a solver that ex-
ploits an efficient encoding of preferred extensions search for abstract
argumentation, using the MaxSAT approach.

1 Introduction

The main computational problems in abstract argumentation include decision
and construction problems, and turn out to be computationally intractable for
most of argumentation semantics [6]. In this paper we focus on the extension
enumeration problem for the preferred semantics, i.e. constructing all preferred
extensions for a given AF : its solution provides complete information about
the justification status of arguments and subsumes the solutions to the other
problems.

In this paper, we propose an efficient encoding of preferred extensions search
using unweighted MaxSAT. The maximum satisfiability problem is the prob-
lem of identifying the maximum number of clauses, of a given boolean formula,
that can be made true together by an assignment of the involved variables. In
unweighted MaxSAT, two classes of clauses are considered: hard and soft. The
former must be always satisfied, while the number of soft clauses satisfied is the
object of the maximisation. The interested reader is referred to [7] for a detailed
introduction. MaxSAT can be considered as a generalisation of the SAT prob-
lem, which looks for a variable assignment that satisfies all the clauses at the
same time.
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2 Background

An argumentation framework [5] consists of a set of arguments4 and a binary
attack relation between them.

Definition 1. An argumentation framework (AF ) is a pair Γ = 〈A,R〉 where
A is a set of arguments and R ⊆ A×A. We say that b attacks a iff 〈b,a〉 ∈ R,
also denoted as b → a. The set of attackers of an argument a will be denoted
as a− , {b : b → a}, the set of arguments attacked by a will be denoted as
a+ , {b : a→ b}.

Each AF has an associated directed graph where the vertices are the argu-
ments, and the edges are the attacks.

The basic properties of conflict–freeness, acceptability, and admissibility of a
set of arguments are fundamental for the definition of argumentation semantics.

Definition 2. Given an AF Γ = 〈A,R〉:

– a set S ⊆ A is a conflict–free set of Γ if @ a, b ∈ S s.t. a→ b;

– an argument a ∈ A is acceptable with respect to a set S ⊆ A of Γ if ∀b ∈ A
s.t. b→ a, ∃ c ∈ S s.t. c→ b;

– a set S ⊆ A is an admissible set of Γ if S is a conflict–free set of Γ and
every element of S is acceptable with respect to S of Γ .

An argumentation semantics σ prescribes for any AF Γ a set of extensions,
denoted as Eσ(Γ ), namely a set of sets of arguments satisfying the conditions
dictated by σ. Here we recall the definitions of preferred (denoted as PR) se-
mantics.

Definition 3. Given an AF Γ = 〈A,R〉, a set S ⊆ A is a preferred extension
of Γ , i.e. S ∈ EPR(Γ ), iff S is a maximal (w.r.t. ⊆) admissible set of Γ .

As discussed in [3, 4] the search for admissible sets can be encoded using
propositional logic formulae.

Definition 4. Given an AF Γ = 〈A,R〉, L a propositional language, and v :
A 7→ L:

admΓ =
∧
a∈A

((
v(a) ⊃

∧
b→a

¬v(b)

)
∧

(
v(a) ⊃

∧
b→a

∨
c→b

v(c)

))

The models of admΓ corresponds to the admissible sets of Γ .

4 In this paper we consider only finite sets of arguments: see [2] for a discussion on
infinite sets of arguments.
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3 The MaxSAT Encoding

The approach we propose, called prefMaxSAT, is based on MaxSAT to iden-
tify the maximal admissible extensions, namely preferred extensions. Each step
of the search process requires the solution of a MaxSAT problem. Precisely,
the algorithm is based on the idea of encoding the constraints corresponding
to admissible labellings of an AF as a MaxSAT problem, and then iteratively
producing and solving modified versions of the initial problem.

Given an AF Γ = 〈A,R〉 we are interested in identifying a boolean formula,
composed by hard and soft clauses, such that each assignment satisfying all
the hard clauses of the formula corresponds to an admissible labelling, and each
assignment satisfying the hard clauses and maximising the number of soft clauses
satisfied corresponds to a preferred labelling.

Definition 5. Given an AF Γ = 〈A,R〉, L a propositional language and v :
A 7→ L, the unweighted MaxSAT encoding for preferred semantics of Γ , ΠΓ , is
given by the conjunction of the hard clauses listed below:∧

{a∈A|a−=∅}

v(a) (1)

∧
{a∈A|a− 6=∅}

( ∧
b→a

(¬v(a) ∨ ¬v(b))

)
(2)

∧
{a∈A|a)− 6=∅}

¬v(a) ∨

 ∨
{c∈A|∃b, c→b ∧ b→a}

v(b)

 (3)

and by the conjunction of the following soft clauses:∧
a∈A

v(a) (4)

The hard clauses of Definition 5 can be related to the definition of admissible
sets (Def. 2): clauses (2) enforce the conflict–freeness; clauses (3) ensure that
each argument in the admissible set is defended.

Finally, soft clauses (4) are used for maximising the number of arguments
included in the admissible set, thus identifying preferred extensions. To this end,
let us consider a function α that, given a variable assignment T , returns S ⊆ A
such that a ∈ S iff v(a) ≡ > in T .

4 Implementation Details

To enumerate all the preferred extension, prefMaxSAT exploits a MaxSAT
solver able to prove unsatisfiability too: it accepts as input a CNF formula,
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composed by soft and hard clauses, and returns a variable assignment maximally
satisfying the formula if it exists. If no variable assignment satisfies the hard
constraints, ε should be returned.

Initially, the original AF is encoded in a CNF, as depicted in Definition 5.
The CNF is then provided to the MaxSAT solver. If a variable assignment that
maximally satisfies the formula is returned: (i) the corresponding labelling is
saved in the list of found preferred extensions; (ii) a hard clause for eliminating
the solution is added to the CNF; (iii) a hard clause forcing to include different
arguments is added to the CNF; (iv) the process is repeated. If the MaxSAT
solver returned ε, prefMaxSAT ends and provides the set of found preferred
extensions.

The algorithm has been implemented in C++, and exploits the open-wbo
MaxSAT framework [8], using glucose3.0 [1]. The latest version can be down-
loaded from http://sourceforge.net/projects/prefmaxsat/ and it should be noted
that prefMaxSAT can be used with any MaxSAT system supporting the DI-
MACS format.
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