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Abstract. In this paper we describe Chimærarg, an approach for combining al-
gorithms into efficient portfolios for addressing enumeration problems — associ-
ated to preferred and stable semantics — in abstract argumentation.

1 Introduction

An abstract argumentation framework (AF) consists of a set of arguments and a binary
attack relation between them. In [7] four semantics were introduced, namely grounded,
preferred, complete, and stable semantics: each of them lead to a single or to multiple
extensions, where an extension is intuitively a set of arguments which can “survive the
conflict together.” We refer the reader to [2] for a detailed analysis. Moreover, for each
semantics, several decision and enumeration problems have been identified.

While there is a growing number of solvers which are able to deal with (some of)
the mentioned argumentation problems, there is no solver that is able to outperform all
the others on any set of benchmark. However, a fruitful way for exploiting the strengths
of multiple solvers, is to combine them into portfolios.

In this paper, we present Chimærarg,4 an approach for combining solvers into static
sequential portfolios for solving the problems of enumerating preferred and stable ex-
tensions.

2 Dung’s Argumentation Framework

An argumentation framework [7] consists of a set of arguments and a binary attack
relation between them.5

4 https://github.com/federicocerutti/Chimaerarg
5 In this paper we consider only finite sets of arguments: see [3] for a discussion on infinite sets

of arguments.



Definition 1. An argumentation framework (AF) is a pair Γ = 〈A,R〉 where A is a
set of arguments and R ⊆A ×A . We say that b attacks a iff 〈b,a〉 ∈R, also denoted
as b→ a.

The basic properties of conflict–freeness, acceptability, and admissibility of a set of
arguments are fundamental for the definition of argumentation semantics.

Definition 2. Given an AF Γ = 〈A,R〉:

– a set S⊆A is a conflict–free set of Γ if @ a,b ∈ S s.t. a→ b;
– an argument a ∈ A is acceptable with respect to a set S ⊆ A of Γ if ∀b ∈ A s.t.

b→ a, ∃ c ∈ S s.t. c→ b;
– a set S ⊆ A is an admissible set of Γ if S is a conflict–free set of Γ and every

element of S is acceptable with respect to S of Γ .

An argumentation semantics σ prescribes for any AF Γ a set of extensions, namely
a set of sets of arguments satisfying the conditions dictated by σ .

Definition 3. Given an AF Γ = 〈A,R〉: a set S⊆A is a:

– preferred extension of Γ iff S is a maximal (w.r.t. set inclusion) admissible set of Γ ;
– stable extension of Γ iff S is a conflict–free set of Γ and A \ S = {a ∈ A | b→

a and b ∈ S}.

3 Generation of Static Portfolios

In this section we describe the technique we used for combining solvers into sequen-
tial portfolios. The approach requires as input a set of solvers, a set of training AFs,
and measures of performance of solvers on the training set. Solvers’ performance are
measured in terms of Penalised Average Runtime (PAR) score. This metric trades off
coverage and runtime for successfully analysed AFs: runs that do not solve the given
problem get ten times the cutoff time (PAR10), other runs get the actual runtime. The
PAR10 score of a solver on a set of AFs is the average of the relevant scores.

Static portfolios—as the name suggests—are generated once, according to the per-
formance of the considered solvers on training instances, and never adjusted. Static
portfolios are defined by: (i) the selected solvers; (ii) the order in which solvers will be
run, and (iii) the runtime allocated to each solver.

Our approach is inspired by the Fast Downward Stone Soup technique [12]. We
start from an empty portfolio, and iteratively we either add a new solver component, or
extend the allocated CPU-time6 of a solver already added to the portfolio, depending
on what maximise the increment of the PAR10 score of the portfolio. We continue until
the time limit of the portfolio has been reached, or it is not possible to further improve
the PAR10 score of the portfolio on the training instances.

6 A granularity of 1 CPU-time second is considered.



4 Chimærarg Configuration

We randomly generated 2,000 AFs based on four different graph models: Barabasi-
Albert [1], Erdös-Rényi [9], Watts-Strogatz [16] and graphs featuring a large number of
stable extensions (hereinafter StableM).

AFs have been generated by using AFBenchGen2 [5], while the StableM set has
been generated using the code provided in Probo [6] by the organisers of ICCMA-15.7

In order to identify challenging frameworks—i.e., neither trivial nor too complex
to be successfully analysed in the given CPU-time—AFs for each set have been se-
lected using the protocol introduced in the 2014 edition of the International Planning
Competition [15]. This protocol lead to the selection of AFs with a number of argu-
ments between 250 and 650, and number of attacks between (approximately) 400 and
180,000.

The set of AFs has been divided into training and validation sets. For each graph
model, we randomly selected 200 AFs for training, and the remaining 300 for testing.
Therefore, out of the 2,000 AFs generated, 800 have been used for training purposes,
while the remaining 1,200 have been used for validating the generated portfolios.

We considered all the solvers that took part in the EE-PR and EE-ST tracks of
ICCMA-15 [14], respectively 15 and 11 systems. For the sake of clarity and concise-
ness, we removed from the analysis single solvers that did not successfully analyse
at least one AF or which were always outperformed by another solver. The interested
reader is referred to [13] for detailed descriptions of the solvers.

Experiments have been run on a cluster with computing nodes equipped with 2.5
Ghz Intel Core 2 Quad Processors, 4 GB of RAM and Linux operating system. A cutoff
of 600 seconds was imposed to compute the extensions—either preferred or stable—
for each AF. For each solver we recorded the overall result: success (if it solved the
considered problem), crashed, timed-out or ran out of memory.

4.1 Generated Portfolios

The portfolio generated for solving the EE-PR problem includes Cegartix [8]—run for
450 CPU-time seconds—and GRIS [11], which is allocated the remaining 150 CPU-
time seconds. The portfolio configured for dealing with the EE-ST problem is composed
by LabSATSolver [4], that starts first and has 300 CPU-time seconds allocated, and
ArgTools [10].
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