
argmat-sat: Applying SAT Solvers for Argumentation
Problems based on Boolean Matrix Algebra?

Fuan Pu, Hang Ya, and Guiming Luo

School of Software, Tsinghua University, Beijing, China
Pu.Fuan@gmail.com, yah16@mails.tsinghua.edu.cn,

gluo@tsinghua.edu.cn

Abstract. This paper presents a system description of argmat-sat, which
chooses SAT solvers to encode and compute argumentation problems. We de-
scribe the encoding approaches for argmat-sat based on Boolean matrix al-
gebra, and an assumption-based algorithm for computing the reasoning tasks of
the maximal semantics (e.g., PR and ID) and the maximal range semantics (e.g.,
SST and STG).

1 CNF encodings for argumentation semantics

Dung’s argumentation semantics [1] can be encoded into Boolean constraint models
based on Boolean matrix algebra [2]. These constraint models can be solved by SAT
solvers, whose inputs are usually represented in CNF.

Let ∆ = 〈X ,R〉 be a finite abstract argumentation framework (AF) with X =
{x1, x2, · · · , xn}. Table 1 provides the conversions from some of the Boolean con-
straint models for the basic semantics (conflict-free, admissible and complete seman-
tics) into CNF encodings, in which the bold letters x, o and p are three n× 1 Boolean
variable vectors, indexing the arguments in X . The Boolean variable vector x is the
Boolean vector representation of an extension (w.r.t. X). If xi = 1, it indicates xi is
in the extension; otherwise, xi is not in the extension. The Boolean variable vectors o
and p consist of auxiliary variables, and they also have specific meanings. The corre-
sponding argument set of o (w.r.t. X) is exactly the argument set that is attacked by
the argument set corresponding to x. In addition, p = ¬o corresponds to the result
of neutrality function with respect to x (see [2]). The encoding for ST can be used for
solving stable semantics, and the encodings for AD and CO can be used for searching
admissible, complete, preferred, grounded and ideal extensions. The CNF encodings of
[ST1] and [CO1] for stable and complete semantics have also appeared in [3]. The CNF
encoding of [AD1] is also introduced in [4]. For the maximal range semantics, i.e., the
semi-stable semantics (SST) and the stage semantics (STG), we introduce another aux-
iliary variable vector r, which represents the range with respect to the extension x. The
CNF encodings of the two semantics are shown in Table 2.

Note that Table 1 and Table 2 merely give the CNF encoding for one argument
xi. The CNF encoding for the semantics σ (w.r.t. ∆) is the conjunction of all CNF

? This work was supported by the Fund NSFC61572279.

Table 1. The conversation for basic semantics

σ Boolean-matrix-algebra-based encoding CNF encoding Vars

ST [ST2] x = N (x)

H[ST2](xi) =
∧

xj∈R+(xi)

(¬xi ∨ ¬xj),

(
xi ∨

∨
xj∈R+(xi)

xj
) n

AD

[AD1]
with [CF2]

{
x 6 N (x)
R−(x) 6 R+(x)

H[AD1](xi) =
∧

xj∈R+(xi)

(¬xi ∧ xj),

∧
xk∈R−(xi)

(
¬xk ∨

∨
xj∈R+(xi)

xj
) n

[AD2]

{
x 6 N (x)
x 6 F(x) ⇔

p = N (x)
x 6 p
x 6 N (p)

H[AD2](xi) =
∧

xj∈R+(xi)

(¬pi ∨ ¬xj),

(
pi ∨

∨
xj∈R+(xi)

xj
)
,

(¬xi ∨ pi),∧
xj∈R+(xi)

(¬xi ∨ ¬pj).

2n

CO

[CO1]
with [CF2]

{
x 6 N (x)
x = F(x) ⇔

o = R+(x)
x 6 ¬o
x = N (¬o)

H[CO1](xi) =
∧

xj∈R+(xi)

(oi ∨ ¬xj),

(
¬oi ∨

∨
xj∈R+(xi)

xj
)
,

(
¬xi ∨ ¬oi

)
,∧

xj∈R+(xi)

(¬xi ∨ oj),

(
xi ∨

∨
xj∈R+(xi)

¬oj
)
.

2n

[CO2] x = N (x) ∗ F(x)⇔
{
p = N (x)
x = N (x) ∗ N (p)

H[CO2](xi) =
∧

xj∈R+(xi)

(¬pi ∨ ¬xj),

(
pi ∨

∨
xj∈R+(xi)

xj
)
,

(
¬xi ∨ pi

)
∧

∧
xj∈R+(xi)

(¬xi ∨ ¬pj),

(
¬pi ∨ xi ∨

∨
xj∈R+(xi)

pj
)
.

2n

encodings of all arguments in ∆, i.e.,

H∆σ (x) =
∧
xi∈X

Hσ(xi) (1)

Table 1 and Table 2 also give the total number of variables that are used in each CNF
encoding (see the rightmost column of the table). By using these CNF encodings, we
can easily solve the reasoning problems for stable and complete semantics based on an
incremental SAT solver. For a semantics, different CNF encodings may have different
performances, since they use various number of variables and clauses. The research in
this regard is still in empirical test.

2 Computing the preferred semantics under assumption space

Since the maximal requirement (w.r.t. ⊆) in preferred semantics is hard to be encoded
by pure Boolean formulas, in the current implementation of argmat-sat, we propose

Table 2. The conversation for the maximal range semantics

σ Boolean-matrix-algebra-based encoding CNF encoding Vars

SST

[SST1]
(using [AD1])

{
[AD1]
r = x+R+(x)

H[SST1](xi) =H[AD1](xi),(
¬ri ∨ xi ∨

∨
xj∈R+(xi)

xj
)
,

(
¬xi ∨ ri

)
∧

∧
xj∈R+(xi)

(
¬xj ∨ ri

)
.

2n

[SST2]
(using [AD2]

or [CO2])

{
[AD2] or [CO2]
r = x+ ¬p

H[SST2](xi) =H[AD2](xi) orH[CO2](xi),(
¬ri ∨ xi ∨ ¬pi

)
,(

¬xi ∨ ri
)
∧
(
pi ∨ ri

)
.

3n

[SST3]
(using [CO1])

{
[CO1]
r = x+ o

H[SST3](xi) =,H[CO1](xi),(
¬ri ∨ xi ∨ oi

)
,(

¬xi ∨ ri
)
∧
(
¬oi ∨ ri

)
.

3n

STG
[STG1]

(using [CF2])

{
x 6 N (x)
r = x+R+(x)

H[STG1](xi) =
∧

xj∈R+(xi)

(¬xi ∧ xj),

(
¬ri ∨ xi ∨

∨
xj∈R+(xi)

xj
)
,

(
¬xi ∨ ri

)
∧

∧
xj∈R+(xi)

(
¬xj ∨ ri

)
.

2n

a novel approach to compute preferred semantics by introducing assumption space to
SAT solvers. Algorithm 1 shows the main process of the current implementation to
enumerate all preferred extensions, where the assumption space is used as a temporary
clause base for searching a maximal extension. When a maximal extension is found,
the clauses in assumption space are erased in order to correctly search the next maximal
extension. The idea of this algorithm is also utilized to compute the ideal semantics.

3 Computing the maximal range semantics

The implementations for computing the semi-stable and stage semantics are also based
on the assumption space. The enumerating tasks for the two maximal range semantics
can be described as below:

(i) Use the assumption-space-based approach to search a maximal range max r and
reset the assumption space to empty;

(ii) Fix the range by adding the clause (r = max r) to the assumption space, then
enumerate all extensions under this maximal range;

(iii) Reset the assumption space to empty again, and then repeat step (i) and (ii) until
all ranges are found and all extensions are enumerated.

It can be seen that the process for computing the maximal range semantics uses the
assumption space twice, one for finding a maximal range, and another one for enumer-
ating all extensions under the range.

Algorithm 1 Enumerate all PR extensions
Require: ∆ = 〈X ,R〉— input an AF;
Ensure: EPR(∆) — return all PR extensions of ∆;
1: EPR(∆)← ∅;
2: solver← new SATSolver(H∆PR(x)); . Create the SAT solver
3: while (s← solver.hasSolution() & s! = null) do . Decide and get a solution
4: max s← null; . If solver has a solution, it must have a maximal solution
5: repeat . The internal loop for searching a maximal solution
6: max s← s; . Store the currently maximal solution
7: solver.addAssumptionClause(s 6 x & ¬(s = x));
8: . Add a clause to the assumption space of solver for ensuring a maximal solution
9: until (s← solver.hasSolution() & s! = null)

10: . When not find a larger solution, the internal loop terminates
11: EPR(∆)← EPR(∆) ∪max s; .max s is a maximal solution and is added into EPR(∆)
12: solver.RemoveAllAssumptionClauses(); . Erase all clauses in assumption space
13: solver.addHardClause(¬(x 6 max s))
14: . Ban the solutions that subsets max s (in hard space), and continue to the next search
15: end while
16: return EPR(Ω);

4 Some implementation details

argmat-sat is implemented by C++, supports all computational problems of ICCMA-
2017, and satisfies the standard command interface of the requirements of ICCMA-
2017. Its SAT engine is selected as CryptoMiniSat51, which provides an easy-to-use
programming interface with high computational efficiency, won the incremental track
at SAT Competition 2016, and gets 3rd place at the parallel track. The current version of
argmat-sat, submitted to ICCMA-2017, supports multi-threading, and can be suc-
cessfully compiled and run under both Windows and Unix OS. The source codes can
be found on the website of our project argumatrix2.

References

1. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Journal of Artificial Intelligence 77(2)
(September 1995) 321–357

2. Fuan, P., Guiming, L., JIANG, Z.: Encoding argumentation semantics by boolean algebra.
IEICE Transactions on Information and Systems 100(4) (2017) 838–848

3. Lagniez, J.M., Lonca, E., Mailly, J.G.: CoQuiAAS: A constraint-based quick abstract argu-
mentation solver. In: Tools with Artificial Intelligence (ICTAI), 2015 IEEE 27th International
Conference on, IEEE (2015) 928–935

4. Wallner, J.P., Weissenbacher, G., Woltran, S.: Advanced SAT techniques for abstract argumen-
tation. In: International Workshop on Computational Logic in Multi-Agent Systems, Springer
(2013) 138–154

1 https://github.com/msoos/cryptominisat
2 https://sites.google.com/site/argumatrix/

