
GG-Sts: Argumentation Solver from Aalto

University in ICCMA 2017

Shahab Tasharrofi Tomi Janhunen

Abstract

This paper describes the argumentation solver GG-Sts [10] from Aalto
University which is submitted to 2017 Argumentation Competition (IC-
CMA 2017 [1]). GG-Sts is a solver on top of Sat-to-Sat [7] which is
developed based on the ideas from Bogaerts et. al. [3]. The main impor-
tance of GG-Sts is that it is obtained automatically from a declarative
description of the different argumentation semantics.

1 Introduction

Abstract argumentation frameworks (AFs) [2] are simple and abstract systems
to deal with contentious information and draw conclusions from it. In AFs,
we are not interested in the actual content of arguments; this information is
abstracted away. Formally, an abstract argumentation framework Θ is a directed
graph (A,R) in which the nodes A represent arguments and the arcs in R
form the attack relation between arguments. We say that argument a attacks
b if (a, b) ∈ R. Given such a graphical representation (A,R) of an abstract
argumentation instance, many different semantics are proposed to capture the
intended solutions to that instance. Such semantics are defined in terms of
extensions, i.e., subsets E of arguments A that satisfy certain criteria. We
refer interested readers to [2, 12, 6] for a more detailed description of different
argumentation semantics.

While the prominence of abstract argumentation frameworks (AFs) neces-
sitates the development of well-performing solvers for them, the existence of
several semantics with varying computational and/or conceptual complexity
has slowed the process of developing AF solvers that use state-of-the-art tech-
niques. To address this issue, Bogaerts et al. [3] proposed to use a declarative
approach to the development of new solvers for knowledge representation sys-
tems. They proposed to use second-order logic to describe the semantics of
a new logical fragment and to convert such a second-order specification to an
instance of Sat-to-Sat [7, 5, 4], our Beyond-SAT solver.

While the approach described in [3] provides a simple way to obtain new
solvers, due to its dependence on answer set solving technology for the ground-
ing phase, it requires its input to be in a reified form. For example, while
Bogaerts et. al. [3] could easily obtain solvers for new logical fragments such
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as equilibrium semantics [9], the input to those solvers could not take the form
of a propositional formula as the syntax of equilibrium logic dictates. Instead,
one would have to convert a propositional formula to its meta-representation
by using facts such as “conj(i, j, k)” which, informally, means that subformula
number i is the conjunction of subformulas j and k.

This paper describes a solver for abstract argumentation framework that is
obtained automatically using an extension of the principle set forth by Bogaerts
et. al. [3], i.e., relying on a declarative approach towards solver development.
That is, using a yet-unpublished framework which can now translate a declar-
ative specification of the syntax, the semantics, and the grounding process of
a logical fragment to a solver, we now present our new and automatically-
generated AF solver: GG-Sts [10].

Source codes for GG-Sts can be downloaded from the following URL:
https://research.ics.aalto.fi/software/sat/gg-sts/.

2 Technical Details

This section describes the technical details behind GG-Sts. We first note that
the name GG-Sts is meant to denote that the final solver is obtained by com-
bining two technological parts: (1) Abbreviation GG that stands for Grounder
Generator, our new and yet-unpublished framework for automatic construction
of a declaratively specified grounding process; and, (2) postfix Sts which abbre-
viates Sat-to-Sat, our in-house nested SAT solver at Aalto University. The
rest of this section briefly describes each of these two parts.

2.1 Pre-processing and Translation for Abstract Argumen-
tation Graphs

This section briefly describes the first stage of our GG-Sts argumentation solver
that takes an argumentation graph, a chosen semantics and a task to perform
and generates a Sat-to-Sat instance. As discussed in Section 1, this part
is automatically generated from a declarative specification of the grounding
process and contains the following three segments:

1. Grammar: A context-free grammar that describes the input format and
accepts both the TGF and APX formats. In order to distinguish be-
tween these two formats, we assume that the instance file is preceded by
one of the keywords TGF or APX. Our call shell scripts guarantees that
the right preceding keyword is forwarded to our declaratively specified
pre-processing tool. Moreover, since the translation steps depend on the
semantics argumentation and the task, the input grammar is extended to
include them at the end of the input file.

2. Bound Computation: While the context-free grammar above declar-
atively specifies the input format to be expected in the argumentation
competition, we use an extension of relational algebra to declaratively
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specify what needs to be computed during the translation process. At
this stage, we have only hard-coded datalog definitions for bound com-
putation according to lifted unit propagation procedure as proposed by
Vaezipoor et. al. [11].

3. Generating Output: The final step in our translation is to generate
a Sat-to-Sat encoding of the original argumentation problem given the
bounds computed in the previous section. At the current step this part is
done only for our in-house nested SAT solver: Sat-to-Sat. However, in
the future, we plan to add support for other solver backends such as QBF
and/or answer set solvers.

2.2 Solving Abstract Argumentation Instances

In the second stage of GG-Sts, we depend on our state-of-the-art nested SAT
solver Sat-to-Sat to find a solution to the original argumentation problem.
Sat-to-Sat is a conflict driven clause learning solver that goes beyond NP using
nested SAT calls which was recently introduced in [7] to solve ∃∀-QBFproblems.
It was then extended in [5, 3] to arbitrary QBF problems. Essentially, this
framework is based on lazy clause generation [8] where clauses are obtained
from calls to other SAT solvers.

The main difference between Sat-to-Sat and a naive nesting of SAT solvers
is that Sat-to-Sat uses the concept of under-approximating formulas to deal
with non-exact interpretations. That is, Sat-to-Sat removes the requirement
by naive nested SAT solving that the inner solver can only be called after the
outer solver has assigned all its variables. Instead, in Sat-to-Sat, the inner
solver can be called at anytime during the reasoning of the outer solver leading
to a more efficient solving process.
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