
Heureka: A General Heuristic Backtracking
Solver for Abstract Argumentation

Nils Geilen and Matthias Thimm

Institute for Web Science and Technologies,
Universität Koblenz-Landau, Germany

Abstract. The heureka solver is a general-purpose solver for various
problems in abstract argumentation frameworks pertaining to complete,
grounded, preferred and stable semantics. It is based on a backtracking
approach and makes use of various heuristics to optimize the search.

ευρηκα! ευρηκα! – I have found it! I have found it!
– Archimedes of Syracuse (287–212 BC)

1 Introduction

An abstract argumentation framework (AAF) as defined by Dung [3] is a tuple
AF = (A,R) where A is a set of arguments and R ⊆ A2 an attack relation
between arguments. An attack a → b ∈ R models that argument a defeats
argument b. An AAF AF is interpreted through the use of extensions, i. e., sets
of arguments that provide a coherent view on the argumentation represented by
AF . An extension E ⊆ A is conflict-free iff there are no a, b ∈ E with a → b.
An extension E is stable iff it is conflict-free and for every b ∈ A \ E there is
a ∈ E with a→ b. Other notions of extensions include complete, grounded, and
preferred extensions, see [3] for the formal definitions.

heureka is a software system that implements a direct backtracking ap-
proach for solving reasoning problems wrt. stable, complete, grounded, and pre-
ferred semantics. The backtracking approach makes uses of a variety of heuristics
to dynamically (re-)order the arguments in order to minimize the backtracking
steps. heureka is able to solve the problems of 1) enumerating all extensions
(EE), 2) determining a single extension (SE), 3) checking whether an argument
is part of at least one extension, i. e., whether it is creduously justifiable (DC),
and 4) checking whether an argument is part of every extension, i. e., whether
it is sceptically justifiable (DS) with respect to the four mentioned semantics.
heureka is written in C++ and available under the LGPL v3.0 licence on
GitHub1.

In the remainder of this paper, we describe the architecture of heureka as it
has been submitted to the Second International Competition on Computational
Models of Argumentation (ICCMA’17)2.

1 https://github.com/nilsgeilen/heureka
2 http://www.dbai.tuwien.ac.at/iccma17

https://github.com/nilsgeilen/heureka
http://www.dbai.tuwien.ac.at/iccma17

Algorithm 1 Enumerate All Stable Extensions

Input: AF = (A,R) AAF
h heuristic
EGR the grounded extension

Output: EST ⊆ 2A stable extensions

1: for all a ∈ A do
2: Lab(a)← UNDEC

3: for all a ∈ EGR do
4: set in(Lab, a)

5: for all a ∈ A do
6: if a→ a then
7: set out(Lab, a)

8: enumerate extensions(Lab)

9: procedure enumerate extensions(Lab)
10: let h choose next argument a, if there is none, stop
11: if Lab(a) = UNDEC then
12: Lab′ ← Lab
13: if set in(Lab′, a) then
14: enumerate extensions(Lab′)
15: if set out(Lab, a) then
16: enumerate extensions(Lab)
17: else
18: enumerate extensions(Lab)

2 Backtracking Algorithm

heureka consists of a family of backtracking algorithms, one for each complete,
preferred, and stable semantics which are similar to the algorithm defined in
[5] but use dynamic heuristics to (re-)order how arguments are processed. The
concrete algorithms differ only slightly so we focus our presentation here on
the stable semantics and, in particular, on the task of computing all stable
extensions.

At any time during the execution, a labelling Lab, which assigns to each
argument either the value IN if it should be contained in the extension, OUT
if it should be ruled out, or UNDEC if it is undecided, is maintained by the
algorithm that keeps track of the current (partial) extension. In a first step,
the grounded extension EGR is computed using a purely iterative algorithm
which does not require backtracking [4] and its arguments are set to IN in Lab.
Using a specific heuristic (see next section) a new argument a is selected and
set to IN in Lab. Setting this argument to IN may require that other arguments
have to be rejected (because they are attacked by a) or need to be set to IN
as well (because all attackers of them are now attacked by some IN-labelled
argument), and so on, see [5] for the corresponding lookahead strategies. Those
arguments are then marked correspondingly in Lab. This step is repeated until

either a stable extension has been determined or a contradiction occurs (an
argument is labelled with two different labels). In the latter case, the algorithm
backtracks and rejects an argument previously accepted. Algorithm 1 shows a
shortened version of this procedure. The functions set in and set out set the
labelling of the current argument to IN or OUT, respectively, and propagate
the changes following the mentioned lookahead strategies. At the end of set in,
the algorithm checks whether the current extension, i. e., the set of IN-labelled
arguments in Lab, is stable, then it is reported as a stable extension and the
algorithm backtracks as the current branch cannot contain any more extensions.

The backtracking algorithms for preferred and complete semantics are sim-
ilar to the one for stable semantics. Reasoning problems pertaining to credu-
lous/sceptical justification are solved by the same algorithms but with different
termination criterions and slightly different initial steps.

3 Heuristics

While it is clear that the backtracking approach outlined before is a sound and
complete procedure to enumerate extensions, its performance is highly dependent
on the order in which arguments are processed. Observe that if this order is
perfect, i. e., all arguments within the final extension are processed first, then
no backtracking is needed and the algorithm has polynomial runtime. However,
this runtime performance cannot, of course, be guaranteed but the choice of the
heuristic used in ordering the arguments can deeply influence the runtime in
general. heureka comes with a series of different heuristics for this purpose.

In general, a heuristic h is a function h : 2A×A → R that maps an argument
a ∈ A and the current partial extension E ⊆ A, i. e., the set of IN-labelled
arguments in Lab, to a real number h(E, a). A large value h(E, a) indicates that a
should be likely included in the extension E and should be processed earlier than
arguments with lower score. Some of our heuristics are defined independently of
E and therefore need not to be recomputed after every modification of E. In
general, however, heureka allows for dynamic heuristics that are updated after
every step.

A simple example of such a heuristic is the number of undefeated aggressors,
i. e., the number of arguments which attack a but are not defeated by E:

hUA(E, a) = |{b | (b, a) ∈ R}\{b | (c, b) ∈ R, c ∈ E}|

Another example which is independent of E is the ratio of an argument’s in-
degree and out-degree:

hDR1(E, a) =
|{b | (a, b) ∈ R}|+ 1

|{b | (b, a) ∈ R}|+ 1

Further heuristics have been implemented on top of well-known graph metrics
such as betweenness centrality, eigenvector centrality, path lengths, and matrix
exponential. Another approach are SCC-based heuristics, which order arguments

according to the ordering number of the strongly connected component, which
they are part of, thus implementing ideas on SCC-recursiveness [1]. On top of the
individual heuristics, heureka also allows arbitrary combinations by weighing
and summation.

For ICCMA’17, we fixed a heuristic for every problem based on a small
experimental evaluation. For all tasks except SE-ST (enumerating some stable
extension) we used the heuristic h1 defined as

h1(E, a) =

3∑
i=1

d+i (a)

2i

where d+i (a) is the number of paths of length i originating in a. For the task
SE-ST we used the heuristic h2 defined as

h2(E, a) = h1(E, a) +

3∑
i=1

d−i (a)

(−2)i
− |{b | (b, a) ∈ R}\{b | (c, b) ∈ R, c ∈ E}|

2

where d−i (a) is the number of paths of length i ending in a. This heuristic is
influenced by the matrix exponential which has been suggested for this use in [2].

4 Summary

We presented heureka, a general-purpose argumentation solver based on the
backtracking paradigm. The solver is backed by a number of heuristics that
(dynamically) order the arguments of an abstract argumentation framework to
minimize the number of necessary backtracking steps. Current and future work
comprises analytical and empirical evaluation of the solver and its heuristics, as
well as the development of new heuristics and combinations thereof.

References

1. Baroni, P., Giacomin, M., Guida, G.: Scc-recursiveness: a general schema for argu-
mentation semantics. Artificial Intelligence 168(1-2), 162–210 (2005)

2. Corea, C., Thimm, M.: Using matrix exponentials for abstract argumentation. In:
Proceedings of the First Workshop on Systems and Applications of Formal Argu-
mentation (SAFA’16). pp. 10–21 (September 2016)

3. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence
77(2), 321 – 357 (1995)

4. Nofal, S., Atkinson, K., Dunne, P.E.: Algorithms for argumentation semantics: la-
beling attacks as a generalization of labeling arguments. Journal of Artificial Intel-
ligence Research 49, 635–668 (2014)

5. Nofal, S., Atkinson, K., Dunne, P.E.: Looking-ahead in backtracking algorithms
for abstract argumentation. International Journal of Approximate Reasoning 78,
265–282 (2016)

	Heureka: A General Heuristic Backtracking Solver for Abstract Argumentation

