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Abstract—AFGCN v2 is an approximate abstract argumen-
tation solver that computes the credulous or skeptical accep-
tance of arguments using an approximation method based on
a Graph Convolutional Network model. This model is trained
on a dataset derived from various competitions, utilizing a
randomized training regime designed to maximize generalization.
At runtime, the solver employs a Python script to calculate
input features, including the grounded extension and additional
graph-based properties, and then uses the GCN model to infer
the acceptability status of arguments. AFGCN v2 builds upon
previous work on approximating the acceptability of abstract
arguments by introducing improvements to the input features
used for approximation.

Index Terms—abstract argumentation, GCN, ICCMA

I. INTRODUCTION

Abstract Argumentation is a formalism for non-monotonic
reasoning that focuses on the representation of conflict. It is
typically represented as a directed graph, where vertices denote
arguments and edges indicate a relation of attack. This leads
to various reasoning problems that determine the acceptability
of arguments or the joint acceptability of sets of arguments.
Most of these reasoning problems are known to be NP-hard
(1], [2].

The AFGCN v2 approximate abstract argumentation solver
employs a Graph Convolutional Network, a subclass of Con-
volutional Graph Neural Networks [3], to compute approxi-
mate solutions for the credulous or skeptical acceptability of
arguments in a given abstract argumentation framework. The
model has been trained on a dataset consisting of argumenta-
tion frameworks from past competitions using a randomized
training methodology that aims to maximize generalization
from the input frameworks. Moreover, the solver uses the
precomputed grounded extension as an input feature for the
neural network to expedite computation and slightly enhance
accuracy. The solver also applies a configurable probability
threshold that can vary according to the semantic and frame-
work size for increased runtime accuracy.

II. APPROXIMATING ARGUMENTATION FRAMEWORKS
USING CONVOLUTIONAL GRAPH NEURAL NETWORKS

Convolutional Graph Neural Networks [3] (CGNNs) build
on the success and popularity of traditional Convolutional
Neural Networks, which define the state of the art in several
subfields of deep learning, particularly in computer vision.
However, there are various methods for defining the convolu-
tional operation when applied to graphs, resulting in different

types of CGNNs. The most common approach is based on
digital signal processing, where convolution is essentially a
noise removal operation. This is also the approach adopted by
the groundbreaking Graph Convolutional Network (GCN) by
Kipf and Welling [4], which is the architecture that AFGCN
v2 adapts for approximating the acceptability of abstract
arguments.

The core GCN architecture has been extended using deep
residual connections between layers, input features based on
the grounded extension, and a randomized training regime
that continuously shuffles both the frameworks to predict and
the values within those frameworks to improve generalization.
AFGCN v2 is built upon previsou work by Malmgqvist et al
(51, [6].

The key components of the GCN architecture used include
the following elements:

1) Randomized input features combined with input features
generated from the grounded extension of the argumen-
tation framework and input features based on graph
properties

2) An input layer receiving these inputs

3) 4 repeating blocks of a GCN layer [4] and a Dropout
layer [7]

4) Residual connections feeding the original features and
the normalized adjacency matrix as additional input at
each block

5) A Sigmoid output layer generating a probability for the
acceptability of each argument in the framework

The model was trained using Adam [8] with Binary Cross-
Entropy as the loss function and a variable learning rate.
The training regime employed a combination of randomized
training batches, dynamic rebalancing of the training data, and
automated outlier exclusion to prevent overfitting and achieve
a high degree of accuracy.

A. Input Features

AFGCN v2 incorporates input features by including the
grounded extension as an input along with randomly initial-
ized features. In addition to these, the AFGCN v2 solver
incorporates a set of new features derived from various graph
properties. The new features are calculated using the following
graph metrics: graph coloring, PageRank, closeness centrality,
eigenvector centrality, in-degrees, and out-degrees.

Graph coloring assigns a color to each node in the graph
such that no two adjacent nodes share the same color. PageR-



ank is an algorithm that measures the importance of nodes
in the graph, assigning a higher rank to more central nodes.
Closeness centrality is a measure of the degree to which
a node is central in the graph, and it is calculated as the
reciprocal of the sum of the shortest path distances between the
node and all other nodes in the graph. Eigenvector centrality
assigns a relative score to each node based on the principle
that connections to high-scoring nodes contribute more to the
score of the node in question than connections to low-scoring
nodes. In-degrees and out-degrees represent the number of
edges pointing towards and away from a node, respectively.
These raw features are computed for each node in the graph,
and a feature vector is created by concatenating the values of
each metric. To ensure that the features are on a comparable
scale, the feature vectors are normalized using a standard
scaler, which transforms the data such that it has zero mean
and unit variance. The resulting normalized features are then
used as input to the GCN model, providing a richer repre-
sentation of the graph structure and potentially improving the
solver’s performance in approximating argument acceptability.

III. IMPLEMENTATION
A. Design of the Solver

The chosen model for the final solver runtime is a 4-layer
model with 128 features per layer. It was trained on a dataset
containing instances from various ICCMA competitions.

The solver has been developed using the Python pro-
gramming language, leveraging the Pytorch framework for
training and modeling, the Deep Graph Library for graph
representation, and Numpy for numerical computation.

At runtime, the solver is invoked using a shell script wrapper
that conforms to the specifications. This shell script calls a
Python script that loads the relevant parameters into the GCN
model based on the semantic in question. It then precomputes
the grounded extension using a Numpy-based grounded solver
and passes this information along with a random input feature
to the GCN model for inference.

The output of the inference step is then passed to a probabil-
ity threshold function, which applies a threshold for acceptance
that is adapted to the size of the argumentation framework
and the semantic under consideration. The solver calculates
the acceptability status of all arguments in the argumentation
framework in parallel during the inference step, but to conform
with the solver specification, it only outputs the predicted
status for the particular argument under consideration.

B. Competition Specific Information

The solver implements functionality for the approximate
track. It is not submitted for any other tracks. Within the
implements functionality for five included semantics: CO, PR,
ST, SST, STG, and ID.

Both problem types (DC and DS) are supported for CO,
PR, ST, SST, and STG semantics. For the ID semantic, DS is
supported.

The solver can be called in the following manner:

python -W ignore::UserWarning:

afgcn_solve.py —-—-filepath=<file>
——task=<problem_type>
——argument=<argument_num>

Example:

python -W ignore::UserWarning:

afgcn_solve.py ——-filepath=testafl.txt
—-—-task=DS-PR ——-argument=4
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