A Tool for Reasoning in Assumption-based
Argumentation using Tree-decompositions

Andrei Popescu
Johannes P. Wallner
Institute of Software Technology
Graz University of Technology
Graz, Austria

Abstract—ASTRA is system for reasoning in assumption-
based argumentation (ABA) that exploits tree-decompositions.
The solver takes an ABA framework as input, and uses dynamic-
programming (DP) algorithms for reasoning. This is achieved
through the D-FLAT framework, which allows for declaratively
specifying DP algorithms in answer set programming (ASP). The
DP algorithms operate on a tree decomposition of a given ABA
framework.

I. INTRODUCTION

In this system description we present ASTRA, a solver
submission to the assumption-based argumentation (ABA) [1]
track of the fifth International Competition on Computa-
tional Models of Argumentation (ICCMA), which follows
successful previous editions [2]-[5]. The solver utilizes tree-
decompositions and tree-width [6] to perform reasoning in
ABA frameworks.

Informally, tree-width is a notion on graphs, which can
be interpreted as measuring “closeness” of graphs to a tree.
Tree-width can be formalized using the concept of tree-
decompositions, which decompose a given graph into a tree-
decomposition. Optimal tree-decompositions then give the
tree-width of a given graph. In addition, tree-decompositions
are utilized as a datastructure for dynamic programming algo-
rithms to operate on. In this approach, for a given problem
that can be represented on graphs, a tree-decomposition is
constructed, following a (often bottom-up) computation on the
tree-decomposition.

Our solver makes use of the recent D-FLAT framework [7]-
[9] that enables specification of dynamic programming al-
gorithms on tree-decompositions in answer set program-
ming (ASP) [10], [11]. D-FLAT internally constructs a tree-
decomposition of the given instance, using the htd library [12],
and performs the dynamic programming algorithm as specified
in ASP.

II. BACKGROUND

We briefly recap ABA frameworks and credulous and skep-
tical reasoning in ABA. For a detailed overview, see, e.g., the
chapter by [13]. As specified in the competition, we consider
the logic programming fragment of ABA [1].

An ABA framework consists of a set of atoms L, a set of
assumptions A C L, a set of rules of the form h < by,...,b,

ASTRA D-FLAT
ABA
——— 3 1) Parse
output 2) ASP-enc.
«— 3) Parameters

-

Fig. 1. System architecture of ASTRA

with b; € £ and h € L\ A, and a contrary function assigning
assumptions a € A a contrary a = x € L.

A subset of the assumptions A C A attacks an assumption
a € A if one can derive @ using the rules in R, starting from
A. A subset of the assumptions is conflict-free if the set does
not attack itself. A subset of assumptions A defends another
set of assumptions B if whenever a set of assumptions C
attacks B, we find that A attacks C.

We define a conflict-free set of assumptions to be admissible
if the set defends itself. If, additionally, every assumption set
defended is included, the set is called a complete assumption
set. A conflict-free assumption set is stable if every assump-
tion {a} C A is attacked by the set (i.e., every singleton
assumption set outside is attacked).

An atom is credulously accepted under a semantics, such
as admissibility, if the atom is derivable from at least one as-
sumptions set of the semantics. Dually, an atom is skeptically
accepted if the atom is derivable from every assumption set
under the semantics.

III. SYSTEM ARCHITECTURE

We briefly describe the architecture of our solver, which
also can be seen in Figure 1.

The solver accepts as input an ABA framework, a query,
and a semantics, in the input specified by the ICCMA 2023
competition. Our solver contains ASP encodings describing
how to solve the ABA reasoning task on tree-decompositions.
The underlying graph structure of an ABA instance is given as
follows: the vertices are composed of the atoms £ and rules
R and an atom is connected to a rule whenever the atom
occurs in the rule (head or body). Two atoms are connected
if one is the contrary of the other. The ASP encodings then
specify what D-FLAT has to compute in each bag of the tree-
decomposition. The query is added into the problem instance
by our solver.

Subsequently, the dynamic programming algorithm is exe-
cuted by D-FLAT, according to our ASP specification. Based
on the output of D-FLAT, our solver computes the answer to
the posed query.

IV. SUPPORTED REASONING TASKS

The solver ASTRA supports the following ABA reasoning
tasks:

e DC-CO, DC-ST: credulous acceptance under complete
and stable semantics, and

« DC-CO, DC-ST: skeptical acceptance under complete and
stable semantics, and

e SE-CO, SE-ST: return of one acceptable set under com-
plete and stable semantics.

V. CONCLUSIONS

In this system description we presented our solver AS-
TRA, an entry to the fifth ICCMA competition for the ABA
track. Our solver is based on dynamic programming on tree-
decomposition of the input ABA framework, where we utilize
the recent D-FLAT framework for declaratively specifying the
dynamic programming algorithm in ASP.

ACKNOWLEDGEMENTS

This research was supported the Austrian Science Fund
(FWF) P35632.

REFERENCES

[1] A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni, “An abstract,
argumentation-theoretic approach to default reasoning,” Artif. Intell.,
vol. 93, pp. 63-101, 1997.

[2] M. Thimm and S. Villata, “The first international competition on
computational models of argumentation: Results and analysis,” Artif.
Intell., vol. 252, pp. 267-294, 2017.

[3]1 S. A. Gaggl, T. Linsbichler, M. Maratea, and S. Woltran, “Summary
report of the second international competition on computational models
of argumentation,” Al Mag., vol. 39, no. 4, pp. 77-79, December 2018.

[4] S. Bistarelli, L. Kotthoff, F. Santini, and C. Taticchi, “Summary report
for the third international competition on computational models of
argumentation,” AI Mag., vol. 42, no. 3, pp. 70-73, 2021.

[5] J. Lagniez, E. Lonca, J. Mailly, and J. Rossit, “Introducing the fourth
international competition on computational models of argumentation,” in
Proc. SAFA, ser. CEUR Workshop Proceedings, S. A. Gaggl, M. Thimm,
and M. Vallati, Eds., vol. 2672. CEUR-WS.org, 2020, pp. 80-85.

[6] H. L. Bodlaender, “A tourist guide through treewidth,” Acta Cybern.,
vol. 11, no. 1-2, pp. 1-21, 1993.

[71 M. Abseher, B. Bliem, G. Charwat, F. Dusberger, M. Hecher, and
S. Woltran, “The D-FLAT system for dynamic programming on tree
decompositions,” in Proc. JELIA, ser. Lecture Notes in Computer
Science, E. Fermé and J. Leite, Eds., vol. 8761. Springer, 2014, pp.
558-572.

[8] B. Bliem, G. Charwat, M. Hecher, and S. Woltran, “D—FLATZ: Subset
minimization in dynamic programming on tree decompositions made
easy,” Fundam. Informaticae, vol. 147, no. 1, pp. 27-61, 2016.

[9] M. Abseher, B. Bliem, M. Hecher, M. Moldovan, and S. Woltran, “Dy-
namic programming on tree decompositions with D-FLAT,” Kiinstliche
Intell., vol. 32, no. 2-3, pp. 191-192, 2018.

[10] M. Gelfond and V. Lifschitz, “The stable model semantics for logic
programming,” in Proc. ICLP, R. A. Kowalski and K. A. Bowen, Eds.
MIT Press, 1988, pp. 1070-1080.

[11] I. Niemel4, “Logic programs with stable model semantics as a constraint
programming paradigm,” Ann. Math. Artif. Intell., vol. 25, no. 3-4, pp.
241-273, 1999.

[12] M. Abseher, N. Musliu, and S. Woltran, “htd - A free, open-source
framework for (customized) tree decompositions and beyond,” in
Proc. CPAIOR, ser. Lecture Notes in Computer Science, D. Salvagnin
and M. Lombardi, Eds., vol. 10335. Springer, 2017, pp. 376-386.

[13] K. Cyras, X. Fan, C. Schulz, and F. Toni, “Assumption-based argu-
mentation: Disputes, explanations, preferences,” in Handbook of Formal
Argumentation, P. Baroni, D. Gabbay, M. Giacomin, and L. van der
Torre, Eds. College Publications, 2018, ch. 7, pp. 365-408.

