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Abstract—We describe PORTSAT, a portfolio of SAT solvers
which can solve several classical reasoning tasks in abstract
argumentation, namely DC-CO, DC-ST, DS-PR, DS-ST, SE-
PR and SE-ST.

Index Terms—Abstract argumentation, SAT solvers, portfolio

I. BACKGROUND: SEMANTICS AND PROBLEMS

We consider abstract argumentation frameworks (AFs) [5].
An AF is a directed graph F = ⟨A,R⟩ where A are the
arguments and R ⊆ A × A is the attack relation. We focus
on several classical extension-based semantics, i.e. functions
σ s.t. σ(F) ⊆ 2A. The semantics that we consider require an
extension S ⊆ A to be conflict-free (i.e. ∀a, b ∈ S, (a, b) ̸∈
R) and admissible (i.e. S is conflict-free and defend all its
elements, meaning that ∀a ∈ S, ∀b ∈ A s.t. (b, a) ∈ R,
∃c ∈ S s.t. (c, b) ∈ R). The semantics are:

• Complete (CO): S is an extension iff it is an admissible
set which does not defend any argument outside of S,

• Preferred (PR): S is an extension iff it is a ⊆-maximal
CO-extension,

• Stable (ST): S is an extension iff it is a conflict-free s.t.
∀b ∈ A \ S, ∃a ∈ S s.t. (a, b) ∈ R.

We consider all the reasoning tasks for the Main Track of
ICCMA 2023:1:

• DC-σ: Given F = ⟨A,R⟩ and a ∈ A, does a belong
to some σ-extension of F? If yes, provide a σ-extension
containing a.

• DS-σ: Given F = ⟨A,R⟩ and a ∈ A, does a belong to
each σ-extension of F? If no, provide a σ-extension not
containing a.

• SE-σ: Given F = ⟨A,R⟩, provide a σ-extension of F .

Our solver can provide answers to six problems: DC-CO,
DC-ST, DS-PR, DS-ST, SE-PR and SE-ST.2

1https://iccma2023.github.io/tracks.html
2DC-PR is ignored because it is equivalent to DC-CO; DS-CO and SE-

CO are ignored because they are equivalent to the same problems for the
grounded semantics, which is polynomially computable.

II. SYSTEM

The solver PORTSAT has been implemented in Rust.3 It
uses a portfolio of SAT solvers to solve the various request
to NP-complete oracles. The source code and documentation
are available online.4

A. SAT Encoding

The propositional encoding for the various semantics are
inspired by the classical approach from [2]. The formula ΦST

from Figure 1 is such that its set of models correspond to the
stable extensions of an AF F = ⟨A,R⟩. So one can solve the
problem SE-ST by asking a SAT solver to provide a model
of it, and DC-ST (resp. DS-ST) by asking for a model of
ΦST ∧ a (resp. ΦST ∧ ¬a).

∧
ai∈A

ai ∨
∨

(aj ,ai)∈R

aj

 ∧
∧

ai∈A

 ∧
(aj ,ai)∈R

(¬ai ∨ ¬aj)


Fig. 1. ΦST

Similarly, the models of the formula ΦCO from Figure 2
correspond to the complete extensions of F = ⟨A,R⟩, so a
model of ΦCO ∧ a provides an answer to DC-CO.
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Fig. 2. ΦCO

For the preferred semantics, we compute the largest com-
plete extension with ΦCO for solving SE-PR, and we

3https://www.rust-lang.org
4https://github.com/QuentinJanuel/PORTSAT



enumerate-and-check all the complete extensions to obtain all
the preferred ones, and from there we can check whether an
argument belongs to all of them to solve DS-PR.

B. SAT Solvers

a) MiniSat: MiniSat is a major reference in the field
of Boolean Satisfiability [8]. It is a minimalistic open-source
SAT solver, that was successful during the SAT competitions
following its release. Many other SAT solvers have been based
on Minisat, which makes its API a common tool in the SAT
community. Like most of the modern SAT solvers, it is based
on the DPLL/CDCL approach [4], [11].

b) ManySat: ManySat is a portfolio of variations of the
DPLL algorithm [9], which runs in parallel these various SAT
solvers to benefit from their respective strengths.

c) MapleSAT: MapleSAT [10] uses MiniSat combined
with machine learning techniques instead of “classical” heuris-
tics.

d) Glucose: Glucose is (again) a SAT solver based on
Minisat, whose main feature is the concept of “glue clauses”
[1], a special type of clauses which have an important role
during the search. PORTSAT actually includes two versions
of Glucose, with or without preprocessing. The version with
preprocessing generally outperforms the other version on
“hard” problems, but the latter seems to be more efficient on
“easy” instances.

III. CONCLUSION

Future work include the addition of other SAT solvers to the
portfolio, the implementation of better algorithms for solving
the current list of problems (in particular, a CEGAR-style
approach [7] for solving DS-PR would probably outperform
the current naive implementation) and the addition of other
semantics (e.g. semi-stable [3], stage [12], ideal [6]).
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