
Argumentation benchmarks from the wild
Daphne Odekerken

National Police Lab AI, Netherlands Police
Department of Information and Computing Sciences, Utrecht University

d.odekerken@uu.nl

Abstract—We present a benchmark generator for abstract
argumentation frameworks (AFs) and assumption-based argu-
mentation frameworks (ABAFs). These AFs and ABAFs are
derived from ASPIC+ argumentation theories that are similar
in structure to the argumentation theories used in a real-life
application at the Dutch police.

Index Terms—Benchmark generator, applications, abstract
argumentation, assumption-based argumentation

I. BACKGROUND

One of the applications of computational argumentation in
law enforcement is a system for the intake of police reports on
online trade fraud [1]. This system advices citizens whether or
not they should submit the report to the police. The advice is
obtained automatically by reasoning with argumentation theo-
ries in the ASPIC+ formalism. These argumentation theories
contain a set of defeasible rules, which model the definition
of online trade fraud, and a knowledge base with evidence
provided by the citizen.

The set of rules in the argumentation theories has a layered
structure: there is one central high-level rule, which gives a
general definition of fraud, in combination with rules that
further specify the elements of this definition and rules for
exceptions. There are 43 rules in total. More details are given
in Table 3 of [1].

In the future, we would like to develop applications for more
general topics in the law enforcement domain than just online
trade fraud. This requires algorithms that can efficiently reason
with larger ASPIC+ argumentation theories. We expect that
the rule sets for such domains have a similar layered structure.
Therefore we developed a script for randomly generating
layered argumentation theories of a specified size.

II. PROPERTIES OF THE GENERATED ARGUMENTATION
THEORIES

The generator uses PyArg [2] to randomly generate ASPIC+

argumentation theories with a given number of literals. Each
literal is assigned a layer, which informally is the largest
number of rule applications to reach this literal from another
literal. The notion of literal layers is illustrated in Figure 1.
For example, the literal l1 is on Layer 0, as there is no rule for
l1. Given that the only rule for l2 is l1 ⇒ l2, the literal l2 is on
Layer 1. Even though l3 can be derived from ¬l0,¬l2 ⇒ l3
(and both ¬l0 and ¬l2 are on Layer 0), it is on Layer 2 since
there is a rule l2 ⇒ l3 and l2 is on Layer 1.

The literal layer distribution is selected to have 2
3 ·|L| literals

with layer 0, each one-tenth of the literals for Layers 1, 2 and

Layer 0

Layer 1

Layer 2

Layer 3

Layer 4

l0 ¬l0 l1¬l2

l2

l3

l4

l5

Fig. 1. Sample of a generated rule set, illustrating the layers of literals.
Defeasible rules are represented by double-lined arrows and contradicting
literals by a red line with a cross in the middle. For readability, not all literals
and rules of the argumentation theory are visualised.

3 and the remaining literals in Layer 4. This distribution is
similar to the distribution of the fraud intake application.

After assigning a layer to each literal, the defeasible rules
are generated in such a way that they establish this distribution
of layers. Just like in the application for fraud intake, there are
no strict rules and no ordinary premises. The number of rules
is 1.5 times the number of literals. Each rule has at least 1
and at least 5 antecedents.

Contrariness is based on classical negation. Each literal in
the language has only its negation as its contradictory. Finally,
a consistent set of axioms is randomly selected from the literals
with Layer 0.

These steps result in ASPIC+ argumentation theories that
are similar in structure to the application at the Dutch police.
In order to convert these into instances for ICCMA, we next
convert these into AFs as well as ABAFs.

III. CONVERSION INTO AFS

Any ASPIC+ argumentation theory can be converted into
an abstract argumentation framework by listing all arguments
inferred by the argumentation theory (following [3] Defini-
tion 5) and identifying all attacks between those arguments.
For converting the generated ASPIC+ argumentation theories
to AFs we provide a script based on PyArg [2]. Note that

all attacks are rebuttals, because the argumentation theory
does not contain ordinary premises (which are required for
undermining attacks) or rules contradicting rule applications
(which are required for undercutting attacks). These AFs are
typically small in size compared to the input argumentation
theory. An explanation for this is that many rules do not
participate in any argument, as some of their antecedents are
not axioms, nor conclusions of any other rule-based argument.
This is also in line with the aforementioned application in
fraud intake, where it depends on the evidence provided by
the citizen which rules apply.

IV. CONVERSION INTO ABAFS

Alternatively, the ASPIC+ argumentation theory can be
converted into an ABAF. For this conversion we provide a
script that implements the method from Definition 24 of [4]. It
replaces every defeasible rule from the ASPIC+ argumentation
theory by two rules in the ABAF and adds an assumption that
this defeasible rule holds. For instance, the ASPIC+ rule r0 :
l0, l4 ⇒ l5 is replaced by the ABA rules r0 holds, l0, l4 → l5
and ¬l5 → ¬r0 holds. Furthermore, the ABAF contains the
assumption r0 holds.

If the ASPIC+ framework had |L| literals, then the ABAF
has 4 · |L| atoms because the ASPIC+ framework with |L|
literals is created with 1.5 · |L| rules and the conversion to
ABA introduces two new atoms for every ASPIC+ rule. If the
ASPIC+ framework had |R| rules, then the ABA framework
has 2 · |R| rules. Finally, note that the ABA framework is flat:
no assumption is the consequent of a rule.

V. USAGE INSTRUCTIONS

The Python package, containing the aforementioned scripts
for generating ASPIC+ argumentation theories and converting
them to AFs and ABAFs, can be found on GitHub.1 The
README of this repository contains usage instructions.

VI. DISCUSSION

We developed the generator in such a way that it creates
ASPIC+ argumentation theories that are similar in structure
to the argumentation theory in an actual application at the
Dutch police. In addition, we developed scripts for converting
these argumentation theories to AFs and ABAFs, which can
be used for testing solvers in the ICCMA competition.

Given the small size of the AFs, we expect that solving the
problems considered in ICCMA (i.e., identifying extensions
and accepted arguments under a given semantics) for these
instances does not require state-of-the-art solvers. However, it
should be noted that the application in fraud intake required
solving the more challenging argumentation problems of iden-
tifying stability [1] and relevance [5], to find out whether (and
which) additional knowledge could still change the acceptance
of specific literals. It would be interesting to consider these
dynamic argumentation problems in future ICCMA editions.

1https://github.com/DaphneOdekerken/LayeredGeneratorICCMA

REFERENCES

[1] D. Odekerken, F. Bex, A. Borg, and B. Testerink, “Approximating
stability for applied argument-base inquiry,” Intelligent Systems with
Applications, Vol. 16, pp 200110, 2022.

[2] D. Odekerken, A. Borg, and M. Berthold, “Accessible algorithms for
applied argumentation,” Proc. of Arg&App, pp. 92–98, 2023.

[3] S. Modgil, and H. Prakken, “A general account of argumentation with
preferences,” Artificial Intelligence, Vol. 195, pp 361–397, 2013.

[4] J. Heyninck, and C. Strasser, “Relations between assumption-based
approaches in nonmonotonic logic and formal argumentation,” Proc. of
NMR, pp 65–75, 2016.

[5] D. Odekerken, T. Lehtonen, A. Borg, J.P. Wallner, and M. Järvisalo,
“Argumentative reasoning in ASPIC+ under incomplete information,”
Proc. of KR, pp 531–541, 2023.

